Cargando…

Metallocene Based Polyolefin Nanocomposites

One of the most efficient and versatile ways to synthesize polyolefin nanocomposites is the in-situ polymerization of olefins in the presence of nano particles by metallocene catalysts. Metallocene/methylaluminoxane (MAO) catalysts are soluble in hydrocarbons and therefore they can be absorbed perfe...

Descripción completa

Detalles Bibliográficos
Autor principal: Kaminsky, Walter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453261/
https://www.ncbi.nlm.nih.gov/pubmed/28788552
http://dx.doi.org/10.3390/ma7031995
Descripción
Sumario:One of the most efficient and versatile ways to synthesize polyolefin nanocomposites is the in-situ polymerization of olefins in the presence of nano particles by metallocene catalysts. Metallocene/methylaluminoxane (MAO) catalysts are soluble in hydrocarbons and therefore they can be absorbed perfectly in solution onto the surface of particles or fibers and after addition of ethene or propene they can then catalyze a polyolefin film on the surface. Metallocene/MAO and other single site catalysts allow the synthesis of polymers with a precisely defined microstructure, tacticity, and stereoregularity as well as new copolymers with superior properties such as film clarity, high tensile strength and lower content of extractables. The polymer properties can be enlarged by the incorporation of nanofillers. The resulting polyethylene or polypropylene nanocomposites give a tremendous boost to the physical and chemical properties such as dramatically improved stiffness, high gas barrier properties, significant flame retardancy, and high crystallization rates.