Cargando…
The rib cage stabilizes the human thoracic spine: An in vitro study using stepwise reduction of rib cage structures
The stabilizing effect of the rib cage on the human thoracic spine is still not sufficiently analyzed. For a better understanding of this effect as well as the calibration and validation of numerical models of the thoracic spine, experimental biomechanics data is required. This study aimed to determ...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453693/ https://www.ncbi.nlm.nih.gov/pubmed/28570671 http://dx.doi.org/10.1371/journal.pone.0178733 |
_version_ | 1783240712842641408 |
---|---|
author | Liebsch, Christian Graf, Nicolas Appelt, Konrad Wilke, Hans-Joachim |
author_facet | Liebsch, Christian Graf, Nicolas Appelt, Konrad Wilke, Hans-Joachim |
author_sort | Liebsch, Christian |
collection | PubMed |
description | The stabilizing effect of the rib cage on the human thoracic spine is still not sufficiently analyzed. For a better understanding of this effect as well as the calibration and validation of numerical models of the thoracic spine, experimental biomechanics data is required. This study aimed to determine (1) the stabilizing effect of the single rib cage structures on the human thoracic spine as well as the effect of the rib cage on (2) the flexibility of the single motion segments and (3) coupled motion behavior of the thoracic spine. Six human thoracic spine specimens including the entire rib cage were loaded quasi-statically with pure moments of ± 2 Nm in flexion/extension (FE), lateral bending (LB), and axial rotation (AR) using a custom-built spine tester. Motion analysis was performed using an optical motion tracking system during load application to determine range of motion (ROM) and neutral zone (NZ). Specimens were tested (1) in intact condition, (2) after removal of the intercostal muscles, (3) after median sternotomy, after removal of (4) the anterior rib cage up to the rib stumps, (5) the right sixth to eighth rib head, and (6) all rib heads. Significant (p < 0.05) increases of the ROM were found after dissecting the intercostal muscles (LB: + 22.4%, AR: + 22.6%), the anterior part of the rib cage (FE: + 21.1%, LB: + 10.9%, AR: + 72.5%), and all rib heads (AR: + 5.8%) relative to its previous condition. Compared to the intact condition, ROM and NZ increased significantly after removing the anterior part of the rib cage (FE: + 52.2%, + 45.6%; LB: + 42.0%, + 54.0%; AR: + 94.4%, + 187.8%). Median sternotomy (FE: + 11.9%, AR: + 21.9%) and partial costovertebral release (AR: + 11.7%) significantly increased the ROM relative to its previous condition. Removing the entire rib cage increased both monosegmental and coupled motion ROM, but did not alter the qualitative motion behavior. The rib cage has a strong effect on thoracic spine rigidity, especially in axial rotation by a factor of more than two, and should therefore be considered in clinical scenarios, in vitro, and in silico. |
format | Online Article Text |
id | pubmed-5453693 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-54536932017-06-12 The rib cage stabilizes the human thoracic spine: An in vitro study using stepwise reduction of rib cage structures Liebsch, Christian Graf, Nicolas Appelt, Konrad Wilke, Hans-Joachim PLoS One Research Article The stabilizing effect of the rib cage on the human thoracic spine is still not sufficiently analyzed. For a better understanding of this effect as well as the calibration and validation of numerical models of the thoracic spine, experimental biomechanics data is required. This study aimed to determine (1) the stabilizing effect of the single rib cage structures on the human thoracic spine as well as the effect of the rib cage on (2) the flexibility of the single motion segments and (3) coupled motion behavior of the thoracic spine. Six human thoracic spine specimens including the entire rib cage were loaded quasi-statically with pure moments of ± 2 Nm in flexion/extension (FE), lateral bending (LB), and axial rotation (AR) using a custom-built spine tester. Motion analysis was performed using an optical motion tracking system during load application to determine range of motion (ROM) and neutral zone (NZ). Specimens were tested (1) in intact condition, (2) after removal of the intercostal muscles, (3) after median sternotomy, after removal of (4) the anterior rib cage up to the rib stumps, (5) the right sixth to eighth rib head, and (6) all rib heads. Significant (p < 0.05) increases of the ROM were found after dissecting the intercostal muscles (LB: + 22.4%, AR: + 22.6%), the anterior part of the rib cage (FE: + 21.1%, LB: + 10.9%, AR: + 72.5%), and all rib heads (AR: + 5.8%) relative to its previous condition. Compared to the intact condition, ROM and NZ increased significantly after removing the anterior part of the rib cage (FE: + 52.2%, + 45.6%; LB: + 42.0%, + 54.0%; AR: + 94.4%, + 187.8%). Median sternotomy (FE: + 11.9%, AR: + 21.9%) and partial costovertebral release (AR: + 11.7%) significantly increased the ROM relative to its previous condition. Removing the entire rib cage increased both monosegmental and coupled motion ROM, but did not alter the qualitative motion behavior. The rib cage has a strong effect on thoracic spine rigidity, especially in axial rotation by a factor of more than two, and should therefore be considered in clinical scenarios, in vitro, and in silico. Public Library of Science 2017-06-01 /pmc/articles/PMC5453693/ /pubmed/28570671 http://dx.doi.org/10.1371/journal.pone.0178733 Text en © 2017 Liebsch et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Liebsch, Christian Graf, Nicolas Appelt, Konrad Wilke, Hans-Joachim The rib cage stabilizes the human thoracic spine: An in vitro study using stepwise reduction of rib cage structures |
title | The rib cage stabilizes the human thoracic spine: An in vitro study using stepwise reduction of rib cage structures |
title_full | The rib cage stabilizes the human thoracic spine: An in vitro study using stepwise reduction of rib cage structures |
title_fullStr | The rib cage stabilizes the human thoracic spine: An in vitro study using stepwise reduction of rib cage structures |
title_full_unstemmed | The rib cage stabilizes the human thoracic spine: An in vitro study using stepwise reduction of rib cage structures |
title_short | The rib cage stabilizes the human thoracic spine: An in vitro study using stepwise reduction of rib cage structures |
title_sort | rib cage stabilizes the human thoracic spine: an in vitro study using stepwise reduction of rib cage structures |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5453693/ https://www.ncbi.nlm.nih.gov/pubmed/28570671 http://dx.doi.org/10.1371/journal.pone.0178733 |
work_keys_str_mv | AT liebschchristian theribcagestabilizesthehumanthoracicspineaninvitrostudyusingstepwisereductionofribcagestructures AT grafnicolas theribcagestabilizesthehumanthoracicspineaninvitrostudyusingstepwisereductionofribcagestructures AT appeltkonrad theribcagestabilizesthehumanthoracicspineaninvitrostudyusingstepwisereductionofribcagestructures AT wilkehansjoachim theribcagestabilizesthehumanthoracicspineaninvitrostudyusingstepwisereductionofribcagestructures AT liebschchristian ribcagestabilizesthehumanthoracicspineaninvitrostudyusingstepwisereductionofribcagestructures AT grafnicolas ribcagestabilizesthehumanthoracicspineaninvitrostudyusingstepwisereductionofribcagestructures AT appeltkonrad ribcagestabilizesthehumanthoracicspineaninvitrostudyusingstepwisereductionofribcagestructures AT wilkehansjoachim ribcagestabilizesthehumanthoracicspineaninvitrostudyusingstepwisereductionofribcagestructures |