Cargando…
An integral equation method for the homogenization of unidirectional fibre-reinforced media; antiplane elasticity and other potential problems
In Parnell & Abrahams (2008 Proc. R. Soc. A 464, 1461–1482. (doi:10.1098/rspa.2007.0254)), a homogenization scheme was developed that gave rise to explicit forms for the effective antiplane shear moduli of a periodic unidirectional fibre-reinforced medium where fibres have non-circular cross sec...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5454357/ https://www.ncbi.nlm.nih.gov/pubmed/28588412 http://dx.doi.org/10.1098/rspa.2017.0080 |
_version_ | 1783240817195876352 |
---|---|
author | Joyce, Duncan Parnell, William J. Assier, Raphaël C. Abrahams, I. David |
author_facet | Joyce, Duncan Parnell, William J. Assier, Raphaël C. Abrahams, I. David |
author_sort | Joyce, Duncan |
collection | PubMed |
description | In Parnell & Abrahams (2008 Proc. R. Soc. A 464, 1461–1482. (doi:10.1098/rspa.2007.0254)), a homogenization scheme was developed that gave rise to explicit forms for the effective antiplane shear moduli of a periodic unidirectional fibre-reinforced medium where fibres have non-circular cross section. The explicit expressions are rational functions in the volume fraction. In that scheme, a (non-dilute) approximation was invoked to determine leading-order expressions. Agreement with existing methods was shown to be good except at very high volume fractions. Here, the theory is extended in order to determine higher-order terms in the expansion. Explicit expressions for effective properties can be derived for fibres with non-circular cross section, without recourse to numerical methods. Terms appearing in the expressions are identified as being associated with the lattice geometry of the periodic fibre distribution, fibre cross-sectional shape and host/fibre material properties. Results are derived in the context of antiplane elasticity but the analogy with the potential problem illustrates the broad applicability of the method to, e.g. thermal, electrostatic and magnetostatic problems. The efficacy of the scheme is illustrated by comparison with the well-established method of asymptotic homogenization where for fibres of general cross section, the associated cell problem must be solved by some computational scheme. |
format | Online Article Text |
id | pubmed-5454357 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-54543572017-06-06 An integral equation method for the homogenization of unidirectional fibre-reinforced media; antiplane elasticity and other potential problems Joyce, Duncan Parnell, William J. Assier, Raphaël C. Abrahams, I. David Proc Math Phys Eng Sci Research Articles In Parnell & Abrahams (2008 Proc. R. Soc. A 464, 1461–1482. (doi:10.1098/rspa.2007.0254)), a homogenization scheme was developed that gave rise to explicit forms for the effective antiplane shear moduli of a periodic unidirectional fibre-reinforced medium where fibres have non-circular cross section. The explicit expressions are rational functions in the volume fraction. In that scheme, a (non-dilute) approximation was invoked to determine leading-order expressions. Agreement with existing methods was shown to be good except at very high volume fractions. Here, the theory is extended in order to determine higher-order terms in the expansion. Explicit expressions for effective properties can be derived for fibres with non-circular cross section, without recourse to numerical methods. Terms appearing in the expressions are identified as being associated with the lattice geometry of the periodic fibre distribution, fibre cross-sectional shape and host/fibre material properties. Results are derived in the context of antiplane elasticity but the analogy with the potential problem illustrates the broad applicability of the method to, e.g. thermal, electrostatic and magnetostatic problems. The efficacy of the scheme is illustrated by comparison with the well-established method of asymptotic homogenization where for fibres of general cross section, the associated cell problem must be solved by some computational scheme. The Royal Society Publishing 2017-05 2017-05-10 /pmc/articles/PMC5454357/ /pubmed/28588412 http://dx.doi.org/10.1098/rspa.2017.0080 Text en © 2017 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Articles Joyce, Duncan Parnell, William J. Assier, Raphaël C. Abrahams, I. David An integral equation method for the homogenization of unidirectional fibre-reinforced media; antiplane elasticity and other potential problems |
title | An integral equation method for the homogenization of unidirectional fibre-reinforced media; antiplane elasticity and other potential problems |
title_full | An integral equation method for the homogenization of unidirectional fibre-reinforced media; antiplane elasticity and other potential problems |
title_fullStr | An integral equation method for the homogenization of unidirectional fibre-reinforced media; antiplane elasticity and other potential problems |
title_full_unstemmed | An integral equation method for the homogenization of unidirectional fibre-reinforced media; antiplane elasticity and other potential problems |
title_short | An integral equation method for the homogenization of unidirectional fibre-reinforced media; antiplane elasticity and other potential problems |
title_sort | integral equation method for the homogenization of unidirectional fibre-reinforced media; antiplane elasticity and other potential problems |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5454357/ https://www.ncbi.nlm.nih.gov/pubmed/28588412 http://dx.doi.org/10.1098/rspa.2017.0080 |
work_keys_str_mv | AT joyceduncan anintegralequationmethodforthehomogenizationofunidirectionalfibrereinforcedmediaantiplaneelasticityandotherpotentialproblems AT parnellwilliamj anintegralequationmethodforthehomogenizationofunidirectionalfibrereinforcedmediaantiplaneelasticityandotherpotentialproblems AT assierraphaelc anintegralequationmethodforthehomogenizationofunidirectionalfibrereinforcedmediaantiplaneelasticityandotherpotentialproblems AT abrahamsidavid anintegralequationmethodforthehomogenizationofunidirectionalfibrereinforcedmediaantiplaneelasticityandotherpotentialproblems AT joyceduncan integralequationmethodforthehomogenizationofunidirectionalfibrereinforcedmediaantiplaneelasticityandotherpotentialproblems AT parnellwilliamj integralequationmethodforthehomogenizationofunidirectionalfibrereinforcedmediaantiplaneelasticityandotherpotentialproblems AT assierraphaelc integralequationmethodforthehomogenizationofunidirectionalfibrereinforcedmediaantiplaneelasticityandotherpotentialproblems AT abrahamsidavid integralequationmethodforthehomogenizationofunidirectionalfibrereinforcedmediaantiplaneelasticityandotherpotentialproblems |