Cargando…

Teleexercise for Persons With Spinal Cord Injury: A Mixed-Methods Feasibility Case Series

BACKGROUND: Spinal cord injury (SCI) results in significant loss of function below the level of injury, often leading to restricted participation in community exercise programs. To overcome commonly experienced barriers to these programs, innovations in technology hold promise for remotely deliverin...

Descripción completa

Detalles Bibliográficos
Autores principales: Lai, Byron, Rimmer, James, Barstow, Beth, Jovanov, Emil, Bickel, C Scott
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5454561/
https://www.ncbi.nlm.nih.gov/pubmed/28582252
http://dx.doi.org/10.2196/rehab.5524
Descripción
Sumario:BACKGROUND: Spinal cord injury (SCI) results in significant loss of function below the level of injury, often leading to restricted participation in community exercise programs. To overcome commonly experienced barriers to these programs, innovations in technology hold promise for remotely delivering safe and effective bouts of exercise in the home. OBJECTIVE: To test the feasibility of a remotely delivered home exercise program for individuals with SCI as determined by (1) implementation of the intervention in the home; (2) exploration of the potential intervention effects on aerobic fitness, physical activity behavior, and subjective well-being; and (3) acceptability of the program through participant self-report. METHODS: Four adults with SCI (mean age 43.5 [SD 5.3] years; 3 males, 1 female; postinjury 25.8 [SD 4.3] years) completed a mixed-methods sequential design with two phases: an 8-week intervention followed by a 3-week nonintervention period. The intervention was a remotely delivered aerobic exercise training program (30-45 minutes, 3 times per week). Instrumentation included an upper body ergometer, tablet, physiological monitor, and custom application that delivered video feed to a remote trainer and monitored and recorded exercise data in real time. Implementation outcomes included adherence, rescheduled sessions, minutes of moderate exercise, and successful recording of exercise data. Pre/post-outcomes included aerobic capacity (VO(2) peak), the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD), the Satisfaction with Life Scale (SWLS), and the Quality of Life Index modified for spinal cord injury (QLI-SCI). Acceptability was determined by participant perceptions of the program features and impact, assessed via qualitative interview at the end of the nonintervention phase. RESULTS: Participants completed all 24 intervention sessions with 100% adherence. Out of 96 scheduled training sessions for the four participants, only 8 (8%) were makeup sessions. The teleexercise system successfully recorded 85% of all exercise data. The exercise program was well tolerated by all participants. All participants described positive outcomes as a result of the intervention and stated that teleexercise circumvented commonly reported barriers to exercise participation. There were no reported adverse events and no dropouts. CONCLUSION: A teleexercise system can be a safe and feasible option to deliver home-based exercise for persons with SCI. Participants responded favorably to the intervention and valued teleexercise for its ability to overcome common barriers to exercise. Study results are promising but warrant further investigation in a larger sample.