Cargando…
PCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein–Protein Interactions from Protein Sequences
Protein–protein interactions (PPIs) are essential for most living organisms’ process. Thus, detecting PPIs is extremely important to understand the molecular mechanisms of biological systems. Although many PPIs data have been generated by high-throughput technologies for a variety of organisms, the...
Autores principales: | Wang, Yanbin, You, Zhuhong, Li, Xiao, Chen, Xing, Jiang, Tonghai, Zhang, Jingting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5454941/ https://www.ncbi.nlm.nih.gov/pubmed/28492483 http://dx.doi.org/10.3390/ijms18051029 |
Ejemplares similares
-
Protein-protein docking using region-based 3D Zernike descriptors
por: Venkatraman, Vishwesh, et al.
Publicado: (2009) -
Exploring the potential of 3D Zernike descriptors and SVM for protein–protein interface prediction
por: Daberdaku, Sebastian, et al.
Publicado: (2018) -
Zernike Moment Based Classification of Cosmic Ray Candidate Hits from CMOS Sensors
por: Bar, Olaf, et al.
Publicado: (2021) -
Quantitative Characterization of Binding Pockets and
Binding Complementarity by Means of Zernike Descriptors
por: Di Rienzo, Lorenzo, et al.
Publicado: (2020) -
Nonlinear Radon Transform Using Zernike Moment for Shape Analysis
por: Ma, Ziping, et al.
Publicado: (2013)