Cargando…
The Bi-Directional Prediction of Carbon Fiber Production Using a Combination of Improved Particle Swarm Optimization and Support Vector Machine
This paper creates a bi-directional prediction model to predict the performance of carbon fiber and the productive parameters based on a support vector machine (SVM) and improved particle swarm optimization (IPSO) algorithm (SVM-IPSO). In the SVM, it is crucial to select the parameters that have an...
Autores principales: | Xiao, Chuncai, Hao, Kuangrong, Ding, Yongsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455220/ https://www.ncbi.nlm.nih.gov/pubmed/28787927 http://dx.doi.org/10.3390/ma8010117 |
Ejemplares similares
-
Performance Prediction of Differential Fibers with a Bi-Directional Optimization Approach
por: Wang, Yi, et al.
Publicado: (2013) -
Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization
por: Abdulameer, Mohammed Hasan, et al.
Publicado: (2014) -
Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization
por: Ma, Yuliang, et al.
Publicado: (2016) -
Prediction of Skin Sensitization with a Particle Swarm Optimized Support Vector Machine
por: Yuan, Hua, et al.
Publicado: (2009) -
Cancer Classification Based on Support Vector Machine Optimized by Particle Swarm Optimization and Artificial Bee Colony
por: Gao, Lingyun, et al.
Publicado: (2017)