Cargando…
Fabrication of Microdots Using Piezoelectric Dispensing Technique for Viscous Fluids
A simple microfluidic control method that uses a piezoelectric dispenser head is developed to fabricate microdots. A glycerol mixture was used as the test fluid to simulate conductive metallic solutions. The orifice diameter of the dispenser was 50 μm. Investigations were conducted at room temperatu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455381/ https://www.ncbi.nlm.nih.gov/pubmed/28793614 http://dx.doi.org/10.3390/ma8105355 |
_version_ | 1783241025847820288 |
---|---|
author | Tsai, Ho-Lin Hwang, Weng-Sing Wang, Jhih-Kai Peng, Wen-Chih Chen, Shin-Hau |
author_facet | Tsai, Ho-Lin Hwang, Weng-Sing Wang, Jhih-Kai Peng, Wen-Chih Chen, Shin-Hau |
author_sort | Tsai, Ho-Lin |
collection | PubMed |
description | A simple microfluidic control method that uses a piezoelectric dispenser head is developed to fabricate microdots. A glycerol mixture was used as the test fluid to simulate conductive metallic solutions. The orifice diameter of the dispenser was 50 μm. Investigations were conducted at room temperature (25 °C). For each bipolar waveform, fluid was extruded in the form of a stretching liquid column, which eventually retracted into the dispenser orifice. Microdots were obtained by governing the liquid transfer process between the dispenser orifice and the target surface, where the gap was smaller than the maximum extrusion length during liquid column formation. Three fluid behaviors were observed using high-speed imaging, namely extrusion, impact on the target surface, and pinch-off of liquid ligament. For gaps of below 70 μm, some of the fluid sticking on the target surface resulted in a microdot diameter of 26 μm (about half of the orifice diameter). |
format | Online Article Text |
id | pubmed-5455381 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-54553812017-07-28 Fabrication of Microdots Using Piezoelectric Dispensing Technique for Viscous Fluids Tsai, Ho-Lin Hwang, Weng-Sing Wang, Jhih-Kai Peng, Wen-Chih Chen, Shin-Hau Materials (Basel) Article A simple microfluidic control method that uses a piezoelectric dispenser head is developed to fabricate microdots. A glycerol mixture was used as the test fluid to simulate conductive metallic solutions. The orifice diameter of the dispenser was 50 μm. Investigations were conducted at room temperature (25 °C). For each bipolar waveform, fluid was extruded in the form of a stretching liquid column, which eventually retracted into the dispenser orifice. Microdots were obtained by governing the liquid transfer process between the dispenser orifice and the target surface, where the gap was smaller than the maximum extrusion length during liquid column formation. Three fluid behaviors were observed using high-speed imaging, namely extrusion, impact on the target surface, and pinch-off of liquid ligament. For gaps of below 70 μm, some of the fluid sticking on the target surface resulted in a microdot diameter of 26 μm (about half of the orifice diameter). MDPI 2015-10-14 /pmc/articles/PMC5455381/ /pubmed/28793614 http://dx.doi.org/10.3390/ma8105355 Text en © 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tsai, Ho-Lin Hwang, Weng-Sing Wang, Jhih-Kai Peng, Wen-Chih Chen, Shin-Hau Fabrication of Microdots Using Piezoelectric Dispensing Technique for Viscous Fluids |
title | Fabrication of Microdots Using Piezoelectric Dispensing Technique for Viscous Fluids |
title_full | Fabrication of Microdots Using Piezoelectric Dispensing Technique for Viscous Fluids |
title_fullStr | Fabrication of Microdots Using Piezoelectric Dispensing Technique for Viscous Fluids |
title_full_unstemmed | Fabrication of Microdots Using Piezoelectric Dispensing Technique for Viscous Fluids |
title_short | Fabrication of Microdots Using Piezoelectric Dispensing Technique for Viscous Fluids |
title_sort | fabrication of microdots using piezoelectric dispensing technique for viscous fluids |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455381/ https://www.ncbi.nlm.nih.gov/pubmed/28793614 http://dx.doi.org/10.3390/ma8105355 |
work_keys_str_mv | AT tsaiholin fabricationofmicrodotsusingpiezoelectricdispensingtechniqueforviscousfluids AT hwangwengsing fabricationofmicrodotsusingpiezoelectricdispensingtechniqueforviscousfluids AT wangjhihkai fabricationofmicrodotsusingpiezoelectricdispensingtechniqueforviscousfluids AT pengwenchih fabricationofmicrodotsusingpiezoelectricdispensingtechniqueforviscousfluids AT chenshinhau fabricationofmicrodotsusingpiezoelectricdispensingtechniqueforviscousfluids |