Cargando…

Inexpensive Ipomoea aquatica Biomass-Modified Carbon Black as an Active Pt-Free Electrocatalyst for Oxygen Reduction Reaction in an Alkaline Medium

The development of inexpensive and active Pt-free catalysts as an alternative to Pt-based catalysts for oxygen reduction reaction (ORR) is an essential prerequisite for fuel cell commercialization. In this paper, we report a strategy for the design of a new Fe–N/C electrocatalyst derived from the co...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yaqiong, Guo, Chaozhong, Ma, Zili, Wu, Huijuan, Chen, Changguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455408/
https://www.ncbi.nlm.nih.gov/pubmed/28793590
http://dx.doi.org/10.3390/ma8105331
Descripción
Sumario:The development of inexpensive and active Pt-free catalysts as an alternative to Pt-based catalysts for oxygen reduction reaction (ORR) is an essential prerequisite for fuel cell commercialization. In this paper, we report a strategy for the design of a new Fe–N/C electrocatalyst derived from the co-pyrolysis of Ipomoea aquatica biomass, carbon black (Vulcan XC-72R) and FeCl(3)·6H(2)O at 900 °C under nitrogen atmosphere. Electrochemical results show that the Fe–N/C catalyst exhibits higher electrocatalytic activity for ORR, longer durability and higher tolerance to methanol compared to a commercial Pt/C catalyst (40 wt %) in an alkaline medium. In particular, Fe–N/C presents an onset potential of 0.05 V (vs. Hg/HgO) for ORR in an alkaline medium, with an electron transfer number (n) of ~3.90, which is close to that of Pt/C. Our results confirm that the catalyst derived from I. aquatica and carbon black is a promising non-noble metal catalyst as an alternative to commercial Pt/C catalysts.