Cargando…

Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC)

Iron-functionalized disordered mesoporous silica (FeKIL-2) is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs) from polluted air via catalytic oxidation. In this study, we investigated the type of catalytical...

Descripción completa

Detalles Bibliográficos
Autores principales: Rangus, Mojca, Mazaj, Matjaž, Dražić, Goran, Popova, Margarita, Tušar, Nataša Novak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455916/
https://www.ncbi.nlm.nih.gov/pubmed/28788674
http://dx.doi.org/10.3390/ma7064243
_version_ 1783241128772894720
author Rangus, Mojca
Mazaj, Matjaž
Dražić, Goran
Popova, Margarita
Tušar, Nataša Novak
author_facet Rangus, Mojca
Mazaj, Matjaž
Dražić, Goran
Popova, Margarita
Tušar, Nataša Novak
author_sort Rangus, Mojca
collection PubMed
description Iron-functionalized disordered mesoporous silica (FeKIL-2) is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs) from polluted air via catalytic oxidation. In this study, we investigated the type of catalytically active iron sites for different iron concentrations in FeKIL-2 catalysts using advanced characterization of the local environment of iron atoms by a combination of X-ray Absorption Spectroscopy Techniques (XANES, EXAFS) and Atomic-Resolution Scanning Transmission Electron Microscopy (AR STEM). We found that the molar ratio Fe/Si ≤ 0.01 leads to the formation of stable, mostly isolated Fe(3+) sites in the silica matrix, while higher iron content Fe/Si > 0.01 leads to the formation of oligonuclear iron clusters. STEM imaging and EELS techniques confirmed the existence of these clusters. Their size ranges from one to a few nanometers, and they are unevenly distributed throughout the material. The size of the clusters was also found to be similar, regardless of the nominal concentration of iron (Fe/Si = 0.02 and Fe/Si = 0.05). From the results obtained from sample characterization and model catalytic tests, we established that the enhanced activity of FeKIL-2 with the optimal Fe/Si = 0.01 ratio can be attributed to: (1) the optimal concentration of stable isolated Fe(3+) in the silica support; and (2) accelerated diffusion of the reactants in disordered mesoporous silica (FeKIL-2) when compared to ordered mesoporous silica materials (FeSBA-15, FeMCM-41).
format Online
Article
Text
id pubmed-5455916
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-54559162017-07-28 Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC) Rangus, Mojca Mazaj, Matjaž Dražić, Goran Popova, Margarita Tušar, Nataša Novak Materials (Basel) Article Iron-functionalized disordered mesoporous silica (FeKIL-2) is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs) from polluted air via catalytic oxidation. In this study, we investigated the type of catalytically active iron sites for different iron concentrations in FeKIL-2 catalysts using advanced characterization of the local environment of iron atoms by a combination of X-ray Absorption Spectroscopy Techniques (XANES, EXAFS) and Atomic-Resolution Scanning Transmission Electron Microscopy (AR STEM). We found that the molar ratio Fe/Si ≤ 0.01 leads to the formation of stable, mostly isolated Fe(3+) sites in the silica matrix, while higher iron content Fe/Si > 0.01 leads to the formation of oligonuclear iron clusters. STEM imaging and EELS techniques confirmed the existence of these clusters. Their size ranges from one to a few nanometers, and they are unevenly distributed throughout the material. The size of the clusters was also found to be similar, regardless of the nominal concentration of iron (Fe/Si = 0.02 and Fe/Si = 0.05). From the results obtained from sample characterization and model catalytic tests, we established that the enhanced activity of FeKIL-2 with the optimal Fe/Si = 0.01 ratio can be attributed to: (1) the optimal concentration of stable isolated Fe(3+) in the silica support; and (2) accelerated diffusion of the reactants in disordered mesoporous silica (FeKIL-2) when compared to ordered mesoporous silica materials (FeSBA-15, FeMCM-41). MDPI 2014-05-30 /pmc/articles/PMC5455916/ /pubmed/28788674 http://dx.doi.org/10.3390/ma7064243 Text en © 2014 by the authors. licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Rangus, Mojca
Mazaj, Matjaž
Dražić, Goran
Popova, Margarita
Tušar, Nataša Novak
Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC)
title Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC)
title_full Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC)
title_fullStr Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC)
title_full_unstemmed Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC)
title_short Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC)
title_sort active iron sites of disordered mesoporous silica catalyst fekil-2 in the oxidation of volatile organic compounds (voc)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455916/
https://www.ncbi.nlm.nih.gov/pubmed/28788674
http://dx.doi.org/10.3390/ma7064243
work_keys_str_mv AT rangusmojca activeironsitesofdisorderedmesoporoussilicacatalystfekil2intheoxidationofvolatileorganiccompoundsvoc
AT mazajmatjaz activeironsitesofdisorderedmesoporoussilicacatalystfekil2intheoxidationofvolatileorganiccompoundsvoc
AT drazicgoran activeironsitesofdisorderedmesoporoussilicacatalystfekil2intheoxidationofvolatileorganiccompoundsvoc
AT popovamargarita activeironsitesofdisorderedmesoporoussilicacatalystfekil2intheoxidationofvolatileorganiccompoundsvoc
AT tusarnatasanovak activeironsitesofdisorderedmesoporoussilicacatalystfekil2intheoxidationofvolatileorganiccompoundsvoc