Cargando…
Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC)
Iron-functionalized disordered mesoporous silica (FeKIL-2) is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs) from polluted air via catalytic oxidation. In this study, we investigated the type of catalytical...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455916/ https://www.ncbi.nlm.nih.gov/pubmed/28788674 http://dx.doi.org/10.3390/ma7064243 |
_version_ | 1783241128772894720 |
---|---|
author | Rangus, Mojca Mazaj, Matjaž Dražić, Goran Popova, Margarita Tušar, Nataša Novak |
author_facet | Rangus, Mojca Mazaj, Matjaž Dražić, Goran Popova, Margarita Tušar, Nataša Novak |
author_sort | Rangus, Mojca |
collection | PubMed |
description | Iron-functionalized disordered mesoporous silica (FeKIL-2) is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs) from polluted air via catalytic oxidation. In this study, we investigated the type of catalytically active iron sites for different iron concentrations in FeKIL-2 catalysts using advanced characterization of the local environment of iron atoms by a combination of X-ray Absorption Spectroscopy Techniques (XANES, EXAFS) and Atomic-Resolution Scanning Transmission Electron Microscopy (AR STEM). We found that the molar ratio Fe/Si ≤ 0.01 leads to the formation of stable, mostly isolated Fe(3+) sites in the silica matrix, while higher iron content Fe/Si > 0.01 leads to the formation of oligonuclear iron clusters. STEM imaging and EELS techniques confirmed the existence of these clusters. Their size ranges from one to a few nanometers, and they are unevenly distributed throughout the material. The size of the clusters was also found to be similar, regardless of the nominal concentration of iron (Fe/Si = 0.02 and Fe/Si = 0.05). From the results obtained from sample characterization and model catalytic tests, we established that the enhanced activity of FeKIL-2 with the optimal Fe/Si = 0.01 ratio can be attributed to: (1) the optimal concentration of stable isolated Fe(3+) in the silica support; and (2) accelerated diffusion of the reactants in disordered mesoporous silica (FeKIL-2) when compared to ordered mesoporous silica materials (FeSBA-15, FeMCM-41). |
format | Online Article Text |
id | pubmed-5455916 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-54559162017-07-28 Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC) Rangus, Mojca Mazaj, Matjaž Dražić, Goran Popova, Margarita Tušar, Nataša Novak Materials (Basel) Article Iron-functionalized disordered mesoporous silica (FeKIL-2) is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs) from polluted air via catalytic oxidation. In this study, we investigated the type of catalytically active iron sites for different iron concentrations in FeKIL-2 catalysts using advanced characterization of the local environment of iron atoms by a combination of X-ray Absorption Spectroscopy Techniques (XANES, EXAFS) and Atomic-Resolution Scanning Transmission Electron Microscopy (AR STEM). We found that the molar ratio Fe/Si ≤ 0.01 leads to the formation of stable, mostly isolated Fe(3+) sites in the silica matrix, while higher iron content Fe/Si > 0.01 leads to the formation of oligonuclear iron clusters. STEM imaging and EELS techniques confirmed the existence of these clusters. Their size ranges from one to a few nanometers, and they are unevenly distributed throughout the material. The size of the clusters was also found to be similar, regardless of the nominal concentration of iron (Fe/Si = 0.02 and Fe/Si = 0.05). From the results obtained from sample characterization and model catalytic tests, we established that the enhanced activity of FeKIL-2 with the optimal Fe/Si = 0.01 ratio can be attributed to: (1) the optimal concentration of stable isolated Fe(3+) in the silica support; and (2) accelerated diffusion of the reactants in disordered mesoporous silica (FeKIL-2) when compared to ordered mesoporous silica materials (FeSBA-15, FeMCM-41). MDPI 2014-05-30 /pmc/articles/PMC5455916/ /pubmed/28788674 http://dx.doi.org/10.3390/ma7064243 Text en © 2014 by the authors. licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Rangus, Mojca Mazaj, Matjaž Dražić, Goran Popova, Margarita Tušar, Nataša Novak Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC) |
title | Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC) |
title_full | Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC) |
title_fullStr | Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC) |
title_full_unstemmed | Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC) |
title_short | Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC) |
title_sort | active iron sites of disordered mesoporous silica catalyst fekil-2 in the oxidation of volatile organic compounds (voc) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455916/ https://www.ncbi.nlm.nih.gov/pubmed/28788674 http://dx.doi.org/10.3390/ma7064243 |
work_keys_str_mv | AT rangusmojca activeironsitesofdisorderedmesoporoussilicacatalystfekil2intheoxidationofvolatileorganiccompoundsvoc AT mazajmatjaz activeironsitesofdisorderedmesoporoussilicacatalystfekil2intheoxidationofvolatileorganiccompoundsvoc AT drazicgoran activeironsitesofdisorderedmesoporoussilicacatalystfekil2intheoxidationofvolatileorganiccompoundsvoc AT popovamargarita activeironsitesofdisorderedmesoporoussilicacatalystfekil2intheoxidationofvolatileorganiccompoundsvoc AT tusarnatasanovak activeironsitesofdisorderedmesoporoussilicacatalystfekil2intheoxidationofvolatileorganiccompoundsvoc |