Cargando…
Identifying Mixtures of Mixtures Using Bayesian Estimation
The use of a finite mixture of normal distributions in model-based clustering allows us to capture non-Gaussian data clusters. However, identifying the clusters from the normal components is challenging and in general either achieved by imposing constraints on the model or by using post-processing p...
Autores principales: | Malsiner-Walli, Gertraud, Frühwirth-Schnatter, Sylvia, Grün, Bettina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455957/ https://www.ncbi.nlm.nih.gov/pubmed/28626349 http://dx.doi.org/10.1080/10618600.2016.1200472 |
Ejemplares similares
-
Model-based clustering based on sparse
finite Gaussian mixtures
por: Malsiner-Walli, Gertraud, et al.
Publicado: (2014) -
How many data clusters are in the Galaxy data set?: Bayesian cluster analysis in action
por: Grün, Bettina, et al.
Publicado: (2021) -
From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering
por: Frühwirth-Schnatter, Sylvia, et al.
Publicado: (2018) -
Semi‐parametric Regression under Model Uncertainty: Economic Applications
por: Malsiner‐Walli, Gertraud, et al.
Publicado: (2019) -
Finite mixture and Markov switching models
por: Frühwirth-Schnatter, Sylvia
Publicado: (2006)