Cargando…
A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements
The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic) network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an...
Autor principal: | Durstewitz, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456035/ https://www.ncbi.nlm.nih.gov/pubmed/28574992 http://dx.doi.org/10.1371/journal.pcbi.1005542 |
Ejemplares similares
-
Chemical-induced disease extraction via recurrent piecewise convolutional neural networks
por: Li, Haodi, et al.
Publicado: (2018) -
Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI
por: Koppe, Georgia, et al.
Publicado: (2019) -
Interpretable Recurrent Neural Networks for reconstructing nonlinear dynamical systems from time series observations
por: Durstewitz, Daniel
Publicado: (2021) -
Dynamics of the Hamiltonian Systems with Piecewise-linear Force
por: Vecheslavov, V V
Publicado: (2004) -
Piecewise linear concordances and isotopies
por: Millett, Kenneth C
Publicado: (1974)