Cargando…
Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric
Data imbalance is frequently encountered in biomedical applications. Resampling techniques can be used in binary classification to tackle this issue. However such solutions are not desired when the number of samples in the small class is limited. Moreover the use of inadequate performance metrics, s...
Autores principales: | Boughorbel, Sabri, Jarray, Fethi, El-Anbari, Mohammed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456046/ https://www.ncbi.nlm.nih.gov/pubmed/28574989 http://dx.doi.org/10.1371/journal.pone.0177678 |
Ejemplares similares
-
Challenges in the real world use of classification accuracy metrics: From recall and precision to the Matthews correlation coefficient
por: Foody, Giles M.
Publicado: (2023) -
The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification
por: Chicco, Davide, et al.
Publicado: (2023) -
An Invitation to Greater Use of Matthews Correlation Coefficient in Robotics and Artificial Intelligence
por: Chicco, Davide, et al.
Publicado: (2022) -
Classifying Extremely Imbalanced Data Sets
por: Britsch, M, et al.
Publicado: (2010) -
The role of alternative Polyadenylation in regulation of rhythmic gene expression
por: Ptitsyna, Natalia, et al.
Publicado: (2017)