Cargando…
Optimization of Aluminum Stressed Skin Panels in Offshore Applications
Since the introduction of general European rules for the design of aluminium structures, specific rules for the design of aluminum stressed skin panels are available. These design rules have been used for the optimization of two extrusion products: one for explosions and wind load governing and one...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456126/ https://www.ncbi.nlm.nih.gov/pubmed/28788214 http://dx.doi.org/10.3390/ma7096811 |
_version_ | 1783241177425772544 |
---|---|
author | van Hove, Dianne Soetens, Frans |
author_facet | van Hove, Dianne Soetens, Frans |
author_sort | van Hove, Dianne |
collection | PubMed |
description | Since the introduction of general European rules for the design of aluminium structures, specific rules for the design of aluminum stressed skin panels are available. These design rules have been used for the optimization of two extrusion products: one for explosions and wind load governing and one for explosions and floor load governing. The optimized extrusions fulfill Class 3 section properties, leading to weight reductions up to 25% of regularly-used shear panel sections. When the design is based on Class 4 section properties, even more weight reduction may be reached. The typical failure mode of the optimized stressed skin panels depends on the applied height of the hat stiffeners. For sections using relatively high hat stiffeners, failure is introduced by yielding of the heat-affected zone. For this type of cross-section, Eurocode 9 design rules and numerical calculations show very good agreement. For sections using relatively low hat stiffeners, failure is introduced by global buckling. For this type of cross-section, Eurocode 9 gives rather conservative results. |
format | Online Article Text |
id | pubmed-5456126 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-54561262017-07-28 Optimization of Aluminum Stressed Skin Panels in Offshore Applications van Hove, Dianne Soetens, Frans Materials (Basel) Article Since the introduction of general European rules for the design of aluminium structures, specific rules for the design of aluminum stressed skin panels are available. These design rules have been used for the optimization of two extrusion products: one for explosions and wind load governing and one for explosions and floor load governing. The optimized extrusions fulfill Class 3 section properties, leading to weight reductions up to 25% of regularly-used shear panel sections. When the design is based on Class 4 section properties, even more weight reduction may be reached. The typical failure mode of the optimized stressed skin panels depends on the applied height of the hat stiffeners. For sections using relatively high hat stiffeners, failure is introduced by yielding of the heat-affected zone. For this type of cross-section, Eurocode 9 design rules and numerical calculations show very good agreement. For sections using relatively low hat stiffeners, failure is introduced by global buckling. For this type of cross-section, Eurocode 9 gives rather conservative results. MDPI 2014-09-19 /pmc/articles/PMC5456126/ /pubmed/28788214 http://dx.doi.org/10.3390/ma7096811 Text en © 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article van Hove, Dianne Soetens, Frans Optimization of Aluminum Stressed Skin Panels in Offshore Applications |
title | Optimization of Aluminum Stressed Skin Panels in Offshore Applications |
title_full | Optimization of Aluminum Stressed Skin Panels in Offshore Applications |
title_fullStr | Optimization of Aluminum Stressed Skin Panels in Offshore Applications |
title_full_unstemmed | Optimization of Aluminum Stressed Skin Panels in Offshore Applications |
title_short | Optimization of Aluminum Stressed Skin Panels in Offshore Applications |
title_sort | optimization of aluminum stressed skin panels in offshore applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456126/ https://www.ncbi.nlm.nih.gov/pubmed/28788214 http://dx.doi.org/10.3390/ma7096811 |
work_keys_str_mv | AT vanhovedianne optimizationofaluminumstressedskinpanelsinoffshoreapplications AT soetensfrans optimizationofaluminumstressedskinpanelsinoffshoreapplications |