Cargando…

Synthesis of Water-Dispersed Ferrecene/Phenylboronic Acid-Modified Bifunctional Gold Nanoparticles and the Application in Biosensing

Phenylboronic acids can form tight covalent bonds with diol-containing biomolecules. In this work, water-dispersed bifunctional gold nanoparticles (AuNPs) modified with ferrecene (Fc)-derivatized peptides and 4-mercaptophenylboronic acids (MBA) (denoted as Fc–MBA–AuNPs) were synthesized and characte...

Descripción completa

Detalles Bibliográficos
Autores principales: Xing, Yun, Liu, Lin, Zhao, Danqing, Yang, Yixin, Chu, Xiaoran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456178/
https://www.ncbi.nlm.nih.gov/pubmed/28788145
http://dx.doi.org/10.3390/ma7085554
Descripción
Sumario:Phenylboronic acids can form tight covalent bonds with diol-containing biomolecules. In this work, water-dispersed bifunctional gold nanoparticles (AuNPs) modified with ferrecene (Fc)-derivatized peptides and 4-mercaptophenylboronic acids (MBA) (denoted as Fc–MBA–AuNPs) were synthesized and characterized by UV/vis spectrometry and transmission electron microscopy. To demonstrate the application and the analytical merits of the nanoparticles in biosensing, glycoprotein avidin was tested as a model analyte. Specifically, avidin was captured by the biotin-covered gold electrode via the strong biotin-avidin interaction. Then, Fc–MBA–AuNPs were attached by the captured avidin through the formation of tight covalent bonds between the boronic acid moieties of Fc–MBA–AuNPs and the oligosaccharides of avidin. As a result, a detection limit of 0.2 pM was achieved. We believe that the bifunctional nanoparticles would found many applications in amplified detection of diol-containing species by rational design of the surface chemistry of electrode.