Cargando…
High Pressure Pneumatic Forming of Ti-3Al-2.5V Titanium Tubes in a Square Cross-Sectional Die
A new high strain rate forming process for titanium alloys is presented and named High Pressure Pneumatic Forming (HPPF), which might be applicable to form certain tubular components with irregular cross sections with high efficiency, both with respect to energy cost and time consumption. HPPF exper...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456185/ https://www.ncbi.nlm.nih.gov/pubmed/28788173 http://dx.doi.org/10.3390/ma7085992 |
_version_ | 1783241193721692160 |
---|---|
author | Liu, Gang Wang, Jianlong Dang, Kexin Tang, Zejun |
author_facet | Liu, Gang Wang, Jianlong Dang, Kexin Tang, Zejun |
author_sort | Liu, Gang |
collection | PubMed |
description | A new high strain rate forming process for titanium alloys is presented and named High Pressure Pneumatic Forming (HPPF), which might be applicable to form certain tubular components with irregular cross sections with high efficiency, both with respect to energy cost and time consumption. HPPF experiments were performed on Ti-3Al-2.5V titanium alloy tubes using a square cross-sectional die with a small corner radius. The effects of forming of pressure and temperature on the corner filling were investigated and the thickness distributions after the HPPF processes at various pressure levels are discussed. At the same time, the stress state, strain and strain rate distribution during the HPPF process were numerically analyzed by the finite element method. Microstructure evolution of the formed tubes was also analyzed by using electron back scattering diffraction (EBSD). Because of different stress states, the strain and strain rate are very different at different areas of the tube during the corner filling process, and consequently the microstructure of the formed component is affected to some degree. The results verified that HPPF is a potential technology to form titanium tubular components with complicated geometrical features with high efficiency. |
format | Online Article Text |
id | pubmed-5456185 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-54561852017-07-28 High Pressure Pneumatic Forming of Ti-3Al-2.5V Titanium Tubes in a Square Cross-Sectional Die Liu, Gang Wang, Jianlong Dang, Kexin Tang, Zejun Materials (Basel) Article A new high strain rate forming process for titanium alloys is presented and named High Pressure Pneumatic Forming (HPPF), which might be applicable to form certain tubular components with irregular cross sections with high efficiency, both with respect to energy cost and time consumption. HPPF experiments were performed on Ti-3Al-2.5V titanium alloy tubes using a square cross-sectional die with a small corner radius. The effects of forming of pressure and temperature on the corner filling were investigated and the thickness distributions after the HPPF processes at various pressure levels are discussed. At the same time, the stress state, strain and strain rate distribution during the HPPF process were numerically analyzed by the finite element method. Microstructure evolution of the formed tubes was also analyzed by using electron back scattering diffraction (EBSD). Because of different stress states, the strain and strain rate are very different at different areas of the tube during the corner filling process, and consequently the microstructure of the formed component is affected to some degree. The results verified that HPPF is a potential technology to form titanium tubular components with complicated geometrical features with high efficiency. MDPI 2014-08-20 /pmc/articles/PMC5456185/ /pubmed/28788173 http://dx.doi.org/10.3390/ma7085992 Text en © 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Liu, Gang Wang, Jianlong Dang, Kexin Tang, Zejun High Pressure Pneumatic Forming of Ti-3Al-2.5V Titanium Tubes in a Square Cross-Sectional Die |
title | High Pressure Pneumatic Forming of Ti-3Al-2.5V Titanium Tubes in a Square Cross-Sectional Die |
title_full | High Pressure Pneumatic Forming of Ti-3Al-2.5V Titanium Tubes in a Square Cross-Sectional Die |
title_fullStr | High Pressure Pneumatic Forming of Ti-3Al-2.5V Titanium Tubes in a Square Cross-Sectional Die |
title_full_unstemmed | High Pressure Pneumatic Forming of Ti-3Al-2.5V Titanium Tubes in a Square Cross-Sectional Die |
title_short | High Pressure Pneumatic Forming of Ti-3Al-2.5V Titanium Tubes in a Square Cross-Sectional Die |
title_sort | high pressure pneumatic forming of ti-3al-2.5v titanium tubes in a square cross-sectional die |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456185/ https://www.ncbi.nlm.nih.gov/pubmed/28788173 http://dx.doi.org/10.3390/ma7085992 |
work_keys_str_mv | AT liugang highpressurepneumaticformingofti3al25vtitaniumtubesinasquarecrosssectionaldie AT wangjianlong highpressurepneumaticformingofti3al25vtitaniumtubesinasquarecrosssectionaldie AT dangkexin highpressurepneumaticformingofti3al25vtitaniumtubesinasquarecrosssectionaldie AT tangzejun highpressurepneumaticformingofti3al25vtitaniumtubesinasquarecrosssectionaldie |