Cargando…
Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO(2) Emission Reduction
In order to reduce carbon dioxide (CO(2)) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456196/ https://www.ncbi.nlm.nih.gov/pubmed/28788171 http://dx.doi.org/10.3390/ma7085959 |
_version_ | 1783241196621004800 |
---|---|
author | Koo, Bon-Min Kim, Jang-Ho Jay Kim, Sung-Bae Mun, Sungho |
author_facet | Koo, Bon-Min Kim, Jang-Ho Jay Kim, Sung-Bae Mun, Sungho |
author_sort | Koo, Bon-Min |
collection | PubMed |
description | In order to reduce carbon dioxide (CO(2)) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete reinforced with recycled PET fibers as a structural material for modern construction. |
format | Online Article Text |
id | pubmed-5456196 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-54561962017-07-28 Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO(2) Emission Reduction Koo, Bon-Min Kim, Jang-Ho Jay Kim, Sung-Bae Mun, Sungho Materials (Basel) Article In order to reduce carbon dioxide (CO(2)) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete reinforced with recycled PET fibers as a structural material for modern construction. MDPI 2014-08-19 /pmc/articles/PMC5456196/ /pubmed/28788171 http://dx.doi.org/10.3390/ma7085959 Text en © 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Koo, Bon-Min Kim, Jang-Ho Jay Kim, Sung-Bae Mun, Sungho Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO(2) Emission Reduction |
title | Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO(2) Emission Reduction |
title_full | Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO(2) Emission Reduction |
title_fullStr | Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO(2) Emission Reduction |
title_full_unstemmed | Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO(2) Emission Reduction |
title_short | Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO(2) Emission Reduction |
title_sort | material and structural performance evaluations of hwangtoh admixtures and recycled pet fiber-added eco-friendly concrete for co(2) emission reduction |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456196/ https://www.ncbi.nlm.nih.gov/pubmed/28788171 http://dx.doi.org/10.3390/ma7085959 |
work_keys_str_mv | AT koobonmin materialandstructuralperformanceevaluationsofhwangtohadmixturesandrecycledpetfiberaddedecofriendlyconcreteforco2emissionreduction AT kimjanghojay materialandstructuralperformanceevaluationsofhwangtohadmixturesandrecycledpetfiberaddedecofriendlyconcreteforco2emissionreduction AT kimsungbae materialandstructuralperformanceevaluationsofhwangtohadmixturesandrecycledpetfiberaddedecofriendlyconcreteforco2emissionreduction AT munsungho materialandstructuralperformanceevaluationsofhwangtohadmixturesandrecycledpetfiberaddedecofriendlyconcreteforco2emissionreduction |