Cargando…

Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population”

Humans have predicted the relationship between heredity and diseases for a long time. Only in the beginning of the last century, scientists begin to discover the connotations between different genes and disease phenotypes. Recent trends in next-generation sequencing (NGS) technologies have brought a...

Descripción completa

Detalles Bibliográficos
Autor principal: Beigh, Mohammad Muzafar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456221/
https://www.ncbi.nlm.nih.gov/pubmed/28930123
http://dx.doi.org/10.3390/medicines3020014
_version_ 1783241203759710208
author Beigh, Mohammad Muzafar
author_facet Beigh, Mohammad Muzafar
author_sort Beigh, Mohammad Muzafar
collection PubMed
description Humans have predicted the relationship between heredity and diseases for a long time. Only in the beginning of the last century, scientists begin to discover the connotations between different genes and disease phenotypes. Recent trends in next-generation sequencing (NGS) technologies have brought a great momentum in biomedical research that in turn has remarkably augmented our basic understanding of human biology and its associated diseases. State-of-the-art next generation biotechnologies have started making huge strides in our current understanding of mechanisms of various chronic illnesses like cancers, metabolic disorders, neurodegenerative anomalies, etc. We are experiencing a renaissance in biomedical research primarily driven by next generation biotechnologies like genomics, transcriptomics, proteomics, metabolomics, lipidomics etc. Although genomic discoveries are at the forefront of next generation omics technologies, however, their implementation into clinical arena had been painstakingly slow mainly because of high reaction costs and unavailability of requisite computational tools for large-scale data analysis. However rapid innovations and steadily lowering cost of sequence-based chemistries along with the development of advanced bioinformatics tools have lately prompted launching and implementation of large-scale massively parallel genome sequencing programs in different fields ranging from medical genetics, infectious biology, agriculture sciences etc. Recent advances in large-scale omics-technologies is bringing healthcare research beyond the traditional “bench to bedside” approach to more of a continuum that will include improvements, in public healthcare and will be primarily based on predictive, preventive, personalized, and participatory medicine approach (P4). Recent large-scale research projects in genetic and infectious disease biology have indicated that massively parallel whole-genome/whole-exome sequencing, transcriptome analysis, and other functional genomic tools can reveal large number of unique functional elements and/or markers that otherwise would be undetected by traditional sequencing methodologies. Therefore, latest trends in the biomedical research is giving birth to the new branch in medicine commonly referred to as personalized and/or precision medicine. Developments in the post-genomic era are believed to completely restructure the present clinical pattern of disease prevention and treatment as well as methods of diagnosis and prognosis. The next important step in the direction of the precision/personalized medicine approach should be its early adoption in clinics for future medical interventions. Consequently, in coming year’s next generation biotechnologies will reorient medical practice more towards disease prediction and prevention approaches rather than curing them at later stages of their development and progression, even at wider population level(s) for general public healthcare system.
format Online
Article
Text
id pubmed-5456221
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-54562212017-09-14 Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population” Beigh, Mohammad Muzafar Medicines (Basel) Review Humans have predicted the relationship between heredity and diseases for a long time. Only in the beginning of the last century, scientists begin to discover the connotations between different genes and disease phenotypes. Recent trends in next-generation sequencing (NGS) technologies have brought a great momentum in biomedical research that in turn has remarkably augmented our basic understanding of human biology and its associated diseases. State-of-the-art next generation biotechnologies have started making huge strides in our current understanding of mechanisms of various chronic illnesses like cancers, metabolic disorders, neurodegenerative anomalies, etc. We are experiencing a renaissance in biomedical research primarily driven by next generation biotechnologies like genomics, transcriptomics, proteomics, metabolomics, lipidomics etc. Although genomic discoveries are at the forefront of next generation omics technologies, however, their implementation into clinical arena had been painstakingly slow mainly because of high reaction costs and unavailability of requisite computational tools for large-scale data analysis. However rapid innovations and steadily lowering cost of sequence-based chemistries along with the development of advanced bioinformatics tools have lately prompted launching and implementation of large-scale massively parallel genome sequencing programs in different fields ranging from medical genetics, infectious biology, agriculture sciences etc. Recent advances in large-scale omics-technologies is bringing healthcare research beyond the traditional “bench to bedside” approach to more of a continuum that will include improvements, in public healthcare and will be primarily based on predictive, preventive, personalized, and participatory medicine approach (P4). Recent large-scale research projects in genetic and infectious disease biology have indicated that massively parallel whole-genome/whole-exome sequencing, transcriptome analysis, and other functional genomic tools can reveal large number of unique functional elements and/or markers that otherwise would be undetected by traditional sequencing methodologies. Therefore, latest trends in the biomedical research is giving birth to the new branch in medicine commonly referred to as personalized and/or precision medicine. Developments in the post-genomic era are believed to completely restructure the present clinical pattern of disease prevention and treatment as well as methods of diagnosis and prognosis. The next important step in the direction of the precision/personalized medicine approach should be its early adoption in clinics for future medical interventions. Consequently, in coming year’s next generation biotechnologies will reorient medical practice more towards disease prediction and prevention approaches rather than curing them at later stages of their development and progression, even at wider population level(s) for general public healthcare system. MDPI 2016-06-02 /pmc/articles/PMC5456221/ /pubmed/28930123 http://dx.doi.org/10.3390/medicines3020014 Text en © 2016 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Beigh, Mohammad Muzafar
Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population”
title Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population”
title_full Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population”
title_fullStr Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population”
title_full_unstemmed Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population”
title_short Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population”
title_sort next-generation sequencing: the translational medicine approach from “bench to bedside to population”
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456221/
https://www.ncbi.nlm.nih.gov/pubmed/28930123
http://dx.doi.org/10.3390/medicines3020014
work_keys_str_mv AT beighmohammadmuzafar nextgenerationsequencingthetranslationalmedicineapproachfrombenchtobedsidetopopulation