Cargando…
Screening large-scale association study data: exploiting interactions using random forests
BACKGROUND: Genome-wide association studies for complex diseases will produce genotypes on hundreds of thousands of single nucleotide polymorphisms (SNPs). A logical first approach to dealing with massive numbers of SNPs is to use some test to screen the SNPs, retaining only those that meet some cri...
Autores principales: | Lunetta, Kathryn L, Hayward, L Brooke, Segal, Jonathan, Van Eerdewegh, Paul |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545646/ https://www.ncbi.nlm.nih.gov/pubmed/15588316 http://dx.doi.org/10.1186/1471-2156-5-32 |
Ejemplares similares
-
Mapping complex traits using Random Forests
por: Bureau, Alexandre, et al.
Publicado: (2003) -
Performance of random forest when SNPs are in linkage disequilibrium
por: Meng, Yan A, et al.
Publicado: (2009) -
A forest-based feature screening approach for large-scale genome data with complex structures
por: Wang, Gang, et al.
Publicado: (2015) -
Exploiting large-scale drug-protein interaction information for computational drug repurposing
por: Liu, Ruifeng, et al.
Publicado: (2014) -
Opening the Random Forest Black Box of (1)H NMR Metabolomics Data by the Exploitation of Surrogate Variables
por: Wenck, Soeren, et al.
Publicado: (2023)