Cargando…
Triggered Release from Thermoresponsive Polymersomes with Superparamagnetic Membranes
Magnetic polymersomes were prepared by self-assembly of the amphiphilic block copolymer poly(isoprene-b-N-isopropylacrylamide) with monodisperse hydrophobic superparamagnetic iron oxide nanoparticles (SPION). The specifically designed thermoresponsive block copolymer allowed for efficient incorporat...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456531/ https://www.ncbi.nlm.nih.gov/pubmed/28787829 http://dx.doi.org/10.3390/ma9010029 |
Sumario: | Magnetic polymersomes were prepared by self-assembly of the amphiphilic block copolymer poly(isoprene-b-N-isopropylacrylamide) with monodisperse hydrophobic superparamagnetic iron oxide nanoparticles (SPION). The specifically designed thermoresponsive block copolymer allowed for efficient incorporation of the hydrophobic nanoparticles in the membrane core and encapsulation of the water soluble dye calcein in the lumen of the vesicles. Magnetic heating of the embedded SPIONs led to increased bilayer permeability through dehydration of the thermoresponsive PNIPAM block. The entrapped calcein could therefore be released in controlled doses solely through exposure to pulses of an alternating magnetic field. This hybrid SPION-polymersome system demonstrates a possible direction for release applications that merges rational polymersome design with addressed external magnetic field-triggered release through embedded nanomaterials. |
---|