Cargando…
Electronic Structure and Optical Property Analysis of Al/Ga-Codoped ZnO through First-Principles Calculations
Using density functional theory and the Hubbard U method, we investigated the geometric structure, electronic structure, and optical property of Al/Ga-codoped ZnO. A 3 × 3 × 3 ZnO supercell was used to construct Al- and Ga-monodoped ZnO structures and Al/Ga-codoped ZnO (AGZO) structures. All three s...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456706/ https://www.ncbi.nlm.nih.gov/pubmed/28773286 http://dx.doi.org/10.3390/ma9030164 |
Sumario: | Using density functional theory and the Hubbard U method, we investigated the geometric structure, electronic structure, and optical property of Al/Ga-codoped ZnO. A 3 × 3 × 3 ZnO supercell was used to construct Al- and Ga-monodoped ZnO structures and Al/Ga-codoped ZnO (AGZO) structures. All three structures showed n-type conduction, and the optical band gaps were larger than that of pure ZnO. For a given impurity concentration, Ga impurities contribute more free carriers than Al impurities in AGZO. However, the presence of Al impurities improves the transmittance. These results can theoretically explain the factors that influence the electrical and optical properties. |
---|