Cargando…
Computational Study of the Effect of Cortical Porosity on Ultrasound Wave Propagation in Healthy and Osteoporotic Long Bones
Computational studies on the evaluation of bone status in cases of pathologies have gained significant interest in recent years. This work presents a parametric and systematic numerical study on ultrasound propagation in cortical bone models to investigate the effect of changes in cortical porosity...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456720/ https://www.ncbi.nlm.nih.gov/pubmed/28773331 http://dx.doi.org/10.3390/ma9030205 |
_version_ | 1783241357101367296 |
---|---|
author | T. Potsika, Vassiliki N. Grivas, Konstantinos Gortsas, Theodoros Iori, Gianluca C. Protopappas, Vasilios Raum, Kay Polyzos, Demosthenes I. Fotiadis, Dimitrios |
author_facet | T. Potsika, Vassiliki N. Grivas, Konstantinos Gortsas, Theodoros Iori, Gianluca C. Protopappas, Vasilios Raum, Kay Polyzos, Demosthenes I. Fotiadis, Dimitrios |
author_sort | T. Potsika, Vassiliki |
collection | PubMed |
description | Computational studies on the evaluation of bone status in cases of pathologies have gained significant interest in recent years. This work presents a parametric and systematic numerical study on ultrasound propagation in cortical bone models to investigate the effect of changes in cortical porosity and the occurrence of large basic multicellular units, simply called non-refilled resorption lacunae (RL), on the velocity of the first arriving signal (FAS). Two-dimensional geometries of cortical bone are established for various microstructural models mimicking normal and pathological tissue states. Emphasis is given on the detection of RL formation which may provoke the thinning of the cortical cortex and the increase of porosity at a later stage of the disease. The central excitation frequencies 0.5 and 1 MHz are examined. The proposed configuration consists of one point source and multiple successive receivers in order to calculate the FAS velocity in small propagation paths (local velocity) and derive a variation profile along the cortical surface. It was shown that: (a) the local FAS velocity can capture porosity changes including the occurrence of RL with different number, size and depth of formation; and (b) the excitation frequency 0.5 MHz is more sensitive for the assessment of cortical microstructure. |
format | Online Article Text |
id | pubmed-5456720 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-54567202017-07-28 Computational Study of the Effect of Cortical Porosity on Ultrasound Wave Propagation in Healthy and Osteoporotic Long Bones T. Potsika, Vassiliki N. Grivas, Konstantinos Gortsas, Theodoros Iori, Gianluca C. Protopappas, Vasilios Raum, Kay Polyzos, Demosthenes I. Fotiadis, Dimitrios Materials (Basel) Article Computational studies on the evaluation of bone status in cases of pathologies have gained significant interest in recent years. This work presents a parametric and systematic numerical study on ultrasound propagation in cortical bone models to investigate the effect of changes in cortical porosity and the occurrence of large basic multicellular units, simply called non-refilled resorption lacunae (RL), on the velocity of the first arriving signal (FAS). Two-dimensional geometries of cortical bone are established for various microstructural models mimicking normal and pathological tissue states. Emphasis is given on the detection of RL formation which may provoke the thinning of the cortical cortex and the increase of porosity at a later stage of the disease. The central excitation frequencies 0.5 and 1 MHz are examined. The proposed configuration consists of one point source and multiple successive receivers in order to calculate the FAS velocity in small propagation paths (local velocity) and derive a variation profile along the cortical surface. It was shown that: (a) the local FAS velocity can capture porosity changes including the occurrence of RL with different number, size and depth of formation; and (b) the excitation frequency 0.5 MHz is more sensitive for the assessment of cortical microstructure. MDPI 2016-03-17 /pmc/articles/PMC5456720/ /pubmed/28773331 http://dx.doi.org/10.3390/ma9030205 Text en © 2016 by the authors; Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article T. Potsika, Vassiliki N. Grivas, Konstantinos Gortsas, Theodoros Iori, Gianluca C. Protopappas, Vasilios Raum, Kay Polyzos, Demosthenes I. Fotiadis, Dimitrios Computational Study of the Effect of Cortical Porosity on Ultrasound Wave Propagation in Healthy and Osteoporotic Long Bones |
title | Computational Study of the Effect of Cortical Porosity on Ultrasound Wave Propagation in Healthy and Osteoporotic Long Bones |
title_full | Computational Study of the Effect of Cortical Porosity on Ultrasound Wave Propagation in Healthy and Osteoporotic Long Bones |
title_fullStr | Computational Study of the Effect of Cortical Porosity on Ultrasound Wave Propagation in Healthy and Osteoporotic Long Bones |
title_full_unstemmed | Computational Study of the Effect of Cortical Porosity on Ultrasound Wave Propagation in Healthy and Osteoporotic Long Bones |
title_short | Computational Study of the Effect of Cortical Porosity on Ultrasound Wave Propagation in Healthy and Osteoporotic Long Bones |
title_sort | computational study of the effect of cortical porosity on ultrasound wave propagation in healthy and osteoporotic long bones |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456720/ https://www.ncbi.nlm.nih.gov/pubmed/28773331 http://dx.doi.org/10.3390/ma9030205 |
work_keys_str_mv | AT tpotsikavassiliki computationalstudyoftheeffectofcorticalporosityonultrasoundwavepropagationinhealthyandosteoporoticlongbones AT ngrivaskonstantinos computationalstudyoftheeffectofcorticalporosityonultrasoundwavepropagationinhealthyandosteoporoticlongbones AT gortsastheodoros computationalstudyoftheeffectofcorticalporosityonultrasoundwavepropagationinhealthyandosteoporoticlongbones AT iorigianluca computationalstudyoftheeffectofcorticalporosityonultrasoundwavepropagationinhealthyandosteoporoticlongbones AT cprotopappasvasilios computationalstudyoftheeffectofcorticalporosityonultrasoundwavepropagationinhealthyandosteoporoticlongbones AT raumkay computationalstudyoftheeffectofcorticalporosityonultrasoundwavepropagationinhealthyandosteoporoticlongbones AT polyzosdemosthenes computationalstudyoftheeffectofcorticalporosityonultrasoundwavepropagationinhealthyandosteoporoticlongbones AT ifotiadisdimitrios computationalstudyoftheeffectofcorticalporosityonultrasoundwavepropagationinhealthyandosteoporoticlongbones |