Cargando…

Polyamide Fiber Reinforced Shotcrete for Tunnel Application

This study intends to establish the mechanical properties of polyamide fiber reinforced shotcrete (PAFRS) in terms of compressive and flexural strengths, in accordance with ASTM C1609/C1609M-12. The mechanical properties identified the influence of polyamide fiber content on the PAFRS strength. This...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeon, Joong Kyu, Kim, WooSeok, Kim, Gyu Yong, Jeon, Chan Ki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456736/
https://www.ncbi.nlm.nih.gov/pubmed/28773293
http://dx.doi.org/10.3390/ma9030163
Descripción
Sumario:This study intends to establish the mechanical properties of polyamide fiber reinforced shotcrete (PAFRS) in terms of compressive and flexural strengths, in accordance with ASTM C1609/C1609M-12. The mechanical properties identified the influence of polyamide fiber content on the PAFRS strength. This study evaluated the toughness of PAFRS and proposed additional toughness level criteria to better represent organic fiber performance. In addition, the fiber rebounding rate and PAFRS performance in tunneling application were evaluated based on a tunnel application in Korea. PAFRS with 0.6%~0.8% volume content in tunneling shotcrete could significantly improve flexural ductility, toughness, and ultimate load capacity. Fiber rebounding tests exhibited a low rebounding rate (8.5%) and low fiber drop (63.5%). Therefore, PAFRS applied to a tunnel exhibited stability and constructability.