Cargando…

Bio-Inspired Supramolecular Chemistry Provides Highly Concentrated Dispersions of Carbon Nanotubes in Polythiophene

In this paper we report the first observation, through X-ray diffraction, of noncovalent uracil–uracil (U–U) dimeric π-stacking interactions in carbon nanotube (CNT)–based supramolecular assemblies. The directionally oriented morphology determined using atomic force microscopy revealed highly organi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yen-Ting, Singh, Ranjodh, Kuo, Shiao-Wei, Ko, Fu-Hsiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456781/
https://www.ncbi.nlm.nih.gov/pubmed/28773559
http://dx.doi.org/10.3390/ma9060438
Descripción
Sumario:In this paper we report the first observation, through X-ray diffraction, of noncovalent uracil–uracil (U–U) dimeric π-stacking interactions in carbon nanotube (CNT)–based supramolecular assemblies. The directionally oriented morphology determined using atomic force microscopy revealed highly organized behavior through π-stacking of U moieties in a U-functionalized CNT derivative (CNT–U). We developed a dispersion system to investigate the bio-inspired interactions between an adenine (A)-terminated poly(3-adeninehexyl thiophene) (PAT) and CNT–U. These hybrid CNT–U/PAT materials interacted through π-stacking and multiple hydrogen bonding between the U moieties of CNT–U and the A moieties of PAT. Most importantly, the U···A multiple hydrogen bonding interactions between CNT–U and PAT enhanced the dispersion of CNT–U in a high-polarity solvent (DMSO). The morphology of these hybrids, determined using transmission electron microscopy, featured grape-like PAT bundles wrapped around the CNT–U surface; this tight connection was responsible for the enhanced dispersion of CNT–U in DMSO.