Cargando…

Photoresponsive Polymeric Reversible Nanoparticles via Self-Assembly of Reactive ABA Triblock Copolymers and Their Transformation to Permanent Nanostructures

Azobenzene-functionalized ABA triblock copolymers with controlled molecular weights are prepared first via a sequential ring-opening metathesis polymerization and acyclic diene metathesis polymerization in one-pot, which are readily converted, by a facile esterification, to the modified ABA triblock...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Liang, Li, Juan, Jiang, Ruiyu, Song, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456965/
https://www.ncbi.nlm.nih.gov/pubmed/28774100
http://dx.doi.org/10.3390/ma9120980
Descripción
Sumario:Azobenzene-functionalized ABA triblock copolymers with controlled molecular weights are prepared first via a sequential ring-opening metathesis polymerization and acyclic diene metathesis polymerization in one-pot, which are readily converted, by a facile esterification, to the modified ABA triblock copolymers. Then, these reactive triblock copolymers can spontaneously self-assemble in a selective solvent to form reproducible and reversible polymeric core-shell nanoparticles. Finally, the stable and permanent shell-crosslinked nanoparticles are obtained by an intramolecular crosslinking reaction in dilute solution under UV light irradiation. These as-prepared polymeric nanoparticles and their precursor incorporating azobenzene chromophores exhibit distinct photoresponsive performance and morphological variation.