Cargando…

Phylogenetic Analysis of Nuclear-Encoded RNA Maturases

Posttranscriptional processes, such as splicing, play a crucial role in gene expression and are prevalent not only in nuclear genes but also in plant mitochondria where splicing of group II introns is catalyzed by a class of proteins termed maturases. In plant mitochondria, there are 22 mitochondria...

Descripción completa

Detalles Bibliográficos
Autores principales: Malik, Sunita, Upadhyaya, KC, Khurana, SM Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457027/
https://www.ncbi.nlm.nih.gov/pubmed/28607538
http://dx.doi.org/10.1177/1176934317710945
Descripción
Sumario:Posttranscriptional processes, such as splicing, play a crucial role in gene expression and are prevalent not only in nuclear genes but also in plant mitochondria where splicing of group II introns is catalyzed by a class of proteins termed maturases. In plant mitochondria, there are 22 mitochondrial group II introns. matR, nMAT1, nMAT2, nMAT3, and nMAT4 proteins have been shown to be required for efficient splicing of several group II introns in Arabidopsis thaliana. Nuclear maturases (nMATs) are necessary for splicing of mitochondrial genes, leading to normal oxidative phosphorylation. Sequence analysis through phylogenetic tree (including bootstrapping) revealed high homology with maturase sequences of A thaliana and other plants. This study shows the phylogenetic relationship of nMAT proteins between A thaliana and other nonredundant plant species taken from BLASTP analysis.