Cargando…

The Effects of a High Magnetic Field on the Annealing of [(Fe(0.5)Co(0.5))(0.75)B(0.2)Si(0.05)](96)Nb(4) Bulk Metallic Glass

In contrast with amorphous alloys, nanocrystalline soft magnetic materials show improved thermal stability and higher soft magnetic properties. The nanocrystalline soft magnetic composites are usually fabricated by partially crystallizing from parent amorphous alloys. This paper reports our experime...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Peng, Wang, En-gang, Han, Ke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457204/
https://www.ncbi.nlm.nih.gov/pubmed/28774018
http://dx.doi.org/10.3390/ma9110899
Descripción
Sumario:In contrast with amorphous alloys, nanocrystalline soft magnetic materials show improved thermal stability and higher soft magnetic properties. The nanocrystalline soft magnetic composites are usually fabricated by partially crystallizing from parent amorphous alloys. This paper reports our experimental observation on the sequence of crystallization in metallic glass under a high magnetic field (HMF). An application of a HMF to bulk metallic glass (BMG) of [(Fe(0.5)Co(0.5))(0.75)B(0.2)Si(0.05)](96)Nb(4) prioritizes the precipitation of α-(Fe,Co) phase separated from the subsequent precipitation of borides, (Fe,Co)(23)B(6), upon isothermal annealing at a glass transition temperature. Furthermore, it was observed that, through the annealing treatment under a HMF, a soft magnetic nanocomposite, in which only α-(Fe,Co) phase uniformly distributes in amorphous matrix, was achieved for boron-bearing BMG. The promotion of the α-Fe or (Fe,Co) phase and the prevention of the boride phases during the isothermal annealing process help to produce high-quality soft magnetic nanocomposite materials. The mechanism by which a HMF influences the crystallization sequence was interpreted via certain changes in Gibbs free energies for two ferromagnetic phases. This finding evidences that the annealing treatment under a HMF is suitable for enhancing the soft magnetic properties of high B content (Fe,Co)-based bulk amorphous and nanocrystalline materials.