Cargando…
Prediction of the Vickers Microhardness and Ultimate Tensile Strength of AA5754 H111 Friction Stir Welding Butt Joints Using Artificial Neural Network
A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of...
Autores principales: | De Filippis, Luigi Alberto Ciro, Serio, Livia Maria, Facchini, Francesco, Mummolo, Giovanni, Ludovico, Antonio Domenico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457229/ https://www.ncbi.nlm.nih.gov/pubmed/28774035 http://dx.doi.org/10.3390/ma9110915 |
Ejemplares similares
-
Optimization and Characterization of the Friction Stir Welded Sheets of AA 5754-H111: Monitoring of the Quality of Joints with Thermographic Techniques
por: De Filippis, Luigi Alberto Ciro, et al.
Publicado: (2017) -
Friction Stir Welding of 5754 Aluminum Alloy with Cover Sheet
por: Ren, Daxin, et al.
Publicado: (2019) -
Influence of Tool Geometry and Process Parameters on the Properties of Friction Stir Spot Welded Multiple (AA 5754 H111) Aluminium Sheets
por: Labus Zlatanovic, Danka, et al.
Publicado: (2021) -
Effect of Friction Stir Process Parameters on the Mechanical and Thermal Behavior of 5754-H111 Aluminum Plates
por: Serio, Livia Maria, et al.
Publicado: (2016) -
Friction Stir Welding of AA5754-H24: Impact of Tool Pin Eccentricity and Welding Speed on Grain Structure, Crystallographic Texture, and Mechanical Properties
por: Ahmed, Mohamed M. Z., et al.
Publicado: (2023)