Cargando…
Synthesis of Reabsorption-Suppressed Type-II/Type-I ZnSe/CdS/ZnS Core/Shell Quantum Dots and Their Application for Immunosorbent Assay
We report a phosphine-free one-pot method to synthesize ZnSe/CdS/ZnS core-shell quantum dots (QDs) with composite type-II/type-I structures and consequent reabsorption suppression properties. The as-synthesized QDs possess high efficient red emission (with quantum yield of 82%) and high optical stab...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457375/ https://www.ncbi.nlm.nih.gov/pubmed/28582961 http://dx.doi.org/10.1186/s11671-017-2135-4 |
Sumario: | We report a phosphine-free one-pot method to synthesize ZnSe/CdS/ZnS core-shell quantum dots (QDs) with composite type-II/type-I structures and consequent reabsorption suppression properties. The as-synthesized QDs possess high efficient red emission (with quantum yield of 82%) and high optical stability. Compared to type-I QDs, the ZnSe/CdS/ZnS QDs show larger Stokes shift and lower reabsorption which can reduce the emission loss and improve the level of fluorescence output. The ZnSe/CdS/ZnS QDs are used as fluorescent labels to exploit their application in fluorescence-linked immunosorbent assay (FLISA) for the first time in the detection of C-reactive protein (CRP) with a limit of detection (LOD) of 0.85 ng/mL, which is more sensitive than that of CdSe/ZnS type-I QDs based FLISA (1.00 ng/mL). The results indicate that the ZnSe/CdS/ZnS type-II/type-I QDs may be good candidates for applications in biomedical information detection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s11671-017-2135-4) contains supplementary material, which is available to authorized users. |
---|