Cargando…

Influences of glutamine administration on response selection and sequence learning: a randomized-controlled trial

Precursors of neurotransmitters are increasingly often investigated as potential, easily-accessible methods of neuromodulation. However, the amino-acid glutamine, precursor to the brain’s main excitatory and inhibitory neurotransmitters glutamate and GABA, remains notably little investigated. The cu...

Descripción completa

Detalles Bibliográficos
Autores principales: Jongkees, Bryant J., Immink, Maarten A., Colzato, Lorenza S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457419/
https://www.ncbi.nlm.nih.gov/pubmed/28578427
http://dx.doi.org/10.1038/s41598-017-02957-w
Descripción
Sumario:Precursors of neurotransmitters are increasingly often investigated as potential, easily-accessible methods of neuromodulation. However, the amino-acid glutamine, precursor to the brain’s main excitatory and inhibitory neurotransmitters glutamate and GABA, remains notably little investigated. The current double-blind, randomized, placebo-controlled study provides first evidence 2.0 g glutamine administration in healthy adults affects response selection but not motor sequence learning in a serial reaction time task. Specifically, glutamine increased response selection errors when the current target response required a different hand than the directly preceding target response, which might indicate enhanced cortical excitability via a presumed increase in glutamate levels. These results suggest glutamine can alter cortical excitability but, despite the critical roles of glutamate and GABA in motor learning, at its current dose glutamine does not affect sequence learning.