Cargando…
Polycyclic aromatic hydrocarbons (PAHs) in Chinese forest soils: profile composition, spatial variations and source apportionment
Previous studies reported that forest ecosystems can play a vital role in scavenging anthropogenic polycyclic aromatic hydrocarbons (PAHs) and act as primary reservoirs of these environmental pollutants. The present study aimed to investigate the occurrence, spatial pattern and source apportionment...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457447/ https://www.ncbi.nlm.nih.gov/pubmed/28578395 http://dx.doi.org/10.1038/s41598-017-02999-0 |
Sumario: | Previous studies reported that forest ecosystems can play a vital role in scavenging anthropogenic polycyclic aromatic hydrocarbons (PAHs) and act as primary reservoirs of these environmental pollutants. The present study aimed to investigate the occurrence, spatial pattern and source apportionment of PAHs across Chinese background forest soils (O- & A-horizons). The 143 soils collected from 30 mountains showed significantly (p < 0.05) higher levels of ∑(15)PAHs (ng g(−1) dw) in O-horizon (222 ± 182) than A-horizon (168 ± 161). A progressive increase in the levels of lighter PAHs was observed along altitudinal gradient, however heavier PAHs did not show any variations. Carbon contents (TOC & BC) of forest soils were found weakly correlated (p < 0.01) with low molecular weight (LMW)-PAHs but showed no relation with high molecular weight (HMW)-PAHs. Source apportionment results using PMF and PCA revealed that PAHs in forest soils mainly come from local biomass burning and/or coal combustion and attributed that forest soils may become a potential sink for PAHs in the region. |
---|