Cargando…

Efficient protein production inspired by how spiders make silk

Membrane proteins are targets of most available pharmaceuticals, but they are difficult to produce recombinantly, like many other aggregation-prone proteins. Spiders can produce silk proteins at huge concentrations by sequestering their aggregation-prone regions in micellar structures, where the ver...

Descripción completa

Detalles Bibliográficos
Autores principales: Kronqvist, Nina, Sarr, Médoune, Lindqvist, Anton, Nordling, Kerstin, Otikovs, Martins, Venturi, Luca, Pioselli, Barbara, Purhonen, Pasi, Landreh, Michael, Biverstål, Henrik, Toleikis, Zigmantas, Sjöberg, Lisa, Robinson, Carol V., Pelizzi, Nicola, Jörnvall, Hans, Hebert, Hans, Jaudzems, Kristaps, Curstedt, Tore, Rising, Anna, Johansson, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457526/
https://www.ncbi.nlm.nih.gov/pubmed/28534479
http://dx.doi.org/10.1038/ncomms15504
Descripción
Sumario:Membrane proteins are targets of most available pharmaceuticals, but they are difficult to produce recombinantly, like many other aggregation-prone proteins. Spiders can produce silk proteins at huge concentrations by sequestering their aggregation-prone regions in micellar structures, where the very soluble N-terminal domain (NT) forms the shell. We hypothesize that fusion to NT could similarly solubilize non-spidroin proteins, and design a charge-reversed mutant (NT*) that is pH insensitive, stabilized and hypersoluble compared to wild-type NT. NT*-transmembrane protein fusions yield up to eight times more of soluble protein in Escherichia coli than fusions with several conventional tags. NT* enables transmembrane peptide purification to homogeneity without chromatography and manufacture of low-cost synthetic lung surfactant that works in an animal model of respiratory disease. NT* also allows efficient expression and purification of non-transmembrane proteins, which are otherwise refractory to recombinant production, and offers a new tool for reluctant proteins in general.