Cargando…

Efficient protein production inspired by how spiders make silk

Membrane proteins are targets of most available pharmaceuticals, but they are difficult to produce recombinantly, like many other aggregation-prone proteins. Spiders can produce silk proteins at huge concentrations by sequestering their aggregation-prone regions in micellar structures, where the ver...

Descripción completa

Detalles Bibliográficos
Autores principales: Kronqvist, Nina, Sarr, Médoune, Lindqvist, Anton, Nordling, Kerstin, Otikovs, Martins, Venturi, Luca, Pioselli, Barbara, Purhonen, Pasi, Landreh, Michael, Biverstål, Henrik, Toleikis, Zigmantas, Sjöberg, Lisa, Robinson, Carol V., Pelizzi, Nicola, Jörnvall, Hans, Hebert, Hans, Jaudzems, Kristaps, Curstedt, Tore, Rising, Anna, Johansson, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457526/
https://www.ncbi.nlm.nih.gov/pubmed/28534479
http://dx.doi.org/10.1038/ncomms15504
_version_ 1783241556911718400
author Kronqvist, Nina
Sarr, Médoune
Lindqvist, Anton
Nordling, Kerstin
Otikovs, Martins
Venturi, Luca
Pioselli, Barbara
Purhonen, Pasi
Landreh, Michael
Biverstål, Henrik
Toleikis, Zigmantas
Sjöberg, Lisa
Robinson, Carol V.
Pelizzi, Nicola
Jörnvall, Hans
Hebert, Hans
Jaudzems, Kristaps
Curstedt, Tore
Rising, Anna
Johansson, Jan
author_facet Kronqvist, Nina
Sarr, Médoune
Lindqvist, Anton
Nordling, Kerstin
Otikovs, Martins
Venturi, Luca
Pioselli, Barbara
Purhonen, Pasi
Landreh, Michael
Biverstål, Henrik
Toleikis, Zigmantas
Sjöberg, Lisa
Robinson, Carol V.
Pelizzi, Nicola
Jörnvall, Hans
Hebert, Hans
Jaudzems, Kristaps
Curstedt, Tore
Rising, Anna
Johansson, Jan
author_sort Kronqvist, Nina
collection PubMed
description Membrane proteins are targets of most available pharmaceuticals, but they are difficult to produce recombinantly, like many other aggregation-prone proteins. Spiders can produce silk proteins at huge concentrations by sequestering their aggregation-prone regions in micellar structures, where the very soluble N-terminal domain (NT) forms the shell. We hypothesize that fusion to NT could similarly solubilize non-spidroin proteins, and design a charge-reversed mutant (NT*) that is pH insensitive, stabilized and hypersoluble compared to wild-type NT. NT*-transmembrane protein fusions yield up to eight times more of soluble protein in Escherichia coli than fusions with several conventional tags. NT* enables transmembrane peptide purification to homogeneity without chromatography and manufacture of low-cost synthetic lung surfactant that works in an animal model of respiratory disease. NT* also allows efficient expression and purification of non-transmembrane proteins, which are otherwise refractory to recombinant production, and offers a new tool for reluctant proteins in general.
format Online
Article
Text
id pubmed-5457526
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-54575262017-06-08 Efficient protein production inspired by how spiders make silk Kronqvist, Nina Sarr, Médoune Lindqvist, Anton Nordling, Kerstin Otikovs, Martins Venturi, Luca Pioselli, Barbara Purhonen, Pasi Landreh, Michael Biverstål, Henrik Toleikis, Zigmantas Sjöberg, Lisa Robinson, Carol V. Pelizzi, Nicola Jörnvall, Hans Hebert, Hans Jaudzems, Kristaps Curstedt, Tore Rising, Anna Johansson, Jan Nat Commun Article Membrane proteins are targets of most available pharmaceuticals, but they are difficult to produce recombinantly, like many other aggregation-prone proteins. Spiders can produce silk proteins at huge concentrations by sequestering their aggregation-prone regions in micellar structures, where the very soluble N-terminal domain (NT) forms the shell. We hypothesize that fusion to NT could similarly solubilize non-spidroin proteins, and design a charge-reversed mutant (NT*) that is pH insensitive, stabilized and hypersoluble compared to wild-type NT. NT*-transmembrane protein fusions yield up to eight times more of soluble protein in Escherichia coli than fusions with several conventional tags. NT* enables transmembrane peptide purification to homogeneity without chromatography and manufacture of low-cost synthetic lung surfactant that works in an animal model of respiratory disease. NT* also allows efficient expression and purification of non-transmembrane proteins, which are otherwise refractory to recombinant production, and offers a new tool for reluctant proteins in general. Nature Publishing Group 2017-05-23 /pmc/articles/PMC5457526/ /pubmed/28534479 http://dx.doi.org/10.1038/ncomms15504 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Kronqvist, Nina
Sarr, Médoune
Lindqvist, Anton
Nordling, Kerstin
Otikovs, Martins
Venturi, Luca
Pioselli, Barbara
Purhonen, Pasi
Landreh, Michael
Biverstål, Henrik
Toleikis, Zigmantas
Sjöberg, Lisa
Robinson, Carol V.
Pelizzi, Nicola
Jörnvall, Hans
Hebert, Hans
Jaudzems, Kristaps
Curstedt, Tore
Rising, Anna
Johansson, Jan
Efficient protein production inspired by how spiders make silk
title Efficient protein production inspired by how spiders make silk
title_full Efficient protein production inspired by how spiders make silk
title_fullStr Efficient protein production inspired by how spiders make silk
title_full_unstemmed Efficient protein production inspired by how spiders make silk
title_short Efficient protein production inspired by how spiders make silk
title_sort efficient protein production inspired by how spiders make silk
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457526/
https://www.ncbi.nlm.nih.gov/pubmed/28534479
http://dx.doi.org/10.1038/ncomms15504
work_keys_str_mv AT kronqvistnina efficientproteinproductioninspiredbyhowspidersmakesilk
AT sarrmedoune efficientproteinproductioninspiredbyhowspidersmakesilk
AT lindqvistanton efficientproteinproductioninspiredbyhowspidersmakesilk
AT nordlingkerstin efficientproteinproductioninspiredbyhowspidersmakesilk
AT otikovsmartins efficientproteinproductioninspiredbyhowspidersmakesilk
AT venturiluca efficientproteinproductioninspiredbyhowspidersmakesilk
AT piosellibarbara efficientproteinproductioninspiredbyhowspidersmakesilk
AT purhonenpasi efficientproteinproductioninspiredbyhowspidersmakesilk
AT landrehmichael efficientproteinproductioninspiredbyhowspidersmakesilk
AT biverstalhenrik efficientproteinproductioninspiredbyhowspidersmakesilk
AT toleikiszigmantas efficientproteinproductioninspiredbyhowspidersmakesilk
AT sjoberglisa efficientproteinproductioninspiredbyhowspidersmakesilk
AT robinsoncarolv efficientproteinproductioninspiredbyhowspidersmakesilk
AT pelizzinicola efficientproteinproductioninspiredbyhowspidersmakesilk
AT jornvallhans efficientproteinproductioninspiredbyhowspidersmakesilk
AT heberthans efficientproteinproductioninspiredbyhowspidersmakesilk
AT jaudzemskristaps efficientproteinproductioninspiredbyhowspidersmakesilk
AT curstedttore efficientproteinproductioninspiredbyhowspidersmakesilk
AT risinganna efficientproteinproductioninspiredbyhowspidersmakesilk
AT johanssonjan efficientproteinproductioninspiredbyhowspidersmakesilk