Cargando…
Ancylostoma ailuropodae n. sp. (Nematoda: Ancylostomatidae), a new hookworm parasite isolated from wild giant pandas in Southwest China
BACKGROUND: Hookworms belonging to the genus Ancylostoma (Dubini, 1843) cause ancylostomiasis, a disease of considerable concern in humans and domestic and wild animals. Molecular and epidemiological data support evidence for the zoonotic potential among species of Ancylostoma where transmission to...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457663/ https://www.ncbi.nlm.nih.gov/pubmed/28576124 http://dx.doi.org/10.1186/s13071-017-2209-2 |
Sumario: | BACKGROUND: Hookworms belonging to the genus Ancylostoma (Dubini, 1843) cause ancylostomiasis, a disease of considerable concern in humans and domestic and wild animals. Molecular and epidemiological data support evidence for the zoonotic potential among species of Ancylostoma where transmission to humans is facilitated by rapid urbanization and increased human-wildlife interactions. It is important to assess and describe these potential zoonotic parasite species in wildlife, especially in hosts that have physiological similarities to humans and share their habitat. Moreover, defining species diversity within parasite groups that can circulate among free-ranging host species and humans also provides a pathway to understanding the distribution of infection and disease. In this study, we describe a previously unrecognized species of hookworm in the genus Ancylostoma in the giant panda, including criteria for morphological and molecular characterization. METHODS: The hookworm specimens were obtained from a wild giant panda that died in the Fengtongzai Natural Reserve in Sichuan Province of China in November 2013. They were microscopically examined and then genetically analyzed by sequencing the nuclear internal transcribed spacer (ITS, ITS1-5.8S-ITS2) and mitochondrial cytochrome c oxidase subunit 1 (cox1) genes in two representative specimens (one female and one male, FTZ1 and FTZ2, respectively). RESULTS: Ancylostoma ailuropodae n. sp. is proposed for these hookworms. Morphologically the hookworm specimens differ from other congeneric species primarily based on the structure of the buccal capsule in males and females, characterized by 2 pairs of ventrolateral and 2 pairs of dorsolateral teeth; males differ in the structure and shape of the copulatory bursa, where the dorsal ray possesses 2 digitations. Pairwise nuclear and mitochondrial DNA comparisons, genetic distance analysis, and phylogenetic data strongly indicate that A. ailuropodae from giant pandas is a separate species which shared a most recent common ancestor with A. ceylanicum Looss, 1911 in the genus Ancylostoma (family Ancylostomatidae). CONCLUSION: Ancylostoma ailuropodae n. sp. is the fourth species of hookworm described from the Ursidae and the fifteenth species assigned to the genus Ancylostoma. A sister-species association with A. ceylanicum and phylogenetic distinctiveness from the monophyletic Uncinaria Frölich, 1789 among ursids and other carnivorans indicate a history of host colonization in the evolutionary radiation among ancylostomatid hookworms. Further, phylogenetic relationships among bears and a history of ecological and geographical isolation for giant pandas may be consistent with two independent events of host colonization in the diversification of Ancylostoma among ursid hosts. A history for host colonization within this assemblage and the relationship for A. ailuropodae n. sp. demonstrate the potential of this species as a zoonotic parasite and as a possible threat to human health. The cumulative morphological, molecular and phylogenetic data presented for A. ailuropodae n. sp. provides a better understanding of the taxonomy, diagnostics and evolutionary biology of the hookworms. |
---|