Cargando…

Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana

We present a novel graphical Gaussian modeling approach for reverse engineering of genetic regulatory networks with many genes and few observations. When applying our approach to infer a gene network for isoprenoid biosynthesis in Arabidopsis thaliana, we detect modules of closely connected genes an...

Descripción completa

Detalles Bibliográficos
Autores principales: Wille, Anja, Zimmermann, Philip, Vranová, Eva, Fürholz, Andreas, Laule, Oliver, Bleuler, Stefan, Hennig, Lars, Prelić, Amela, von Rohr, Peter, Thiele, Lothar, Zitzler, Eckart, Gruissem, Wilhelm, Bühlmann, Peter
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545783/
https://www.ncbi.nlm.nih.gov/pubmed/15535868
http://dx.doi.org/10.1186/gb-2004-5-11-r92
Descripción
Sumario:We present a novel graphical Gaussian modeling approach for reverse engineering of genetic regulatory networks with many genes and few observations. When applying our approach to infer a gene network for isoprenoid biosynthesis in Arabidopsis thaliana, we detect modules of closely connected genes and candidate genes for possible cross-talk between the isoprenoid pathways. Genes of downstream pathways also fit well into the network. We evaluate our approach in a simulation study and using the yeast galactose network.