Cargando…
Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana
We present a novel graphical Gaussian modeling approach for reverse engineering of genetic regulatory networks with many genes and few observations. When applying our approach to infer a gene network for isoprenoid biosynthesis in Arabidopsis thaliana, we detect modules of closely connected genes an...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545783/ https://www.ncbi.nlm.nih.gov/pubmed/15535868 http://dx.doi.org/10.1186/gb-2004-5-11-r92 |
_version_ | 1782122214318931968 |
---|---|
author | Wille, Anja Zimmermann, Philip Vranová, Eva Fürholz, Andreas Laule, Oliver Bleuler, Stefan Hennig, Lars Prelić, Amela von Rohr, Peter Thiele, Lothar Zitzler, Eckart Gruissem, Wilhelm Bühlmann, Peter |
author_facet | Wille, Anja Zimmermann, Philip Vranová, Eva Fürholz, Andreas Laule, Oliver Bleuler, Stefan Hennig, Lars Prelić, Amela von Rohr, Peter Thiele, Lothar Zitzler, Eckart Gruissem, Wilhelm Bühlmann, Peter |
author_sort | Wille, Anja |
collection | PubMed |
description | We present a novel graphical Gaussian modeling approach for reverse engineering of genetic regulatory networks with many genes and few observations. When applying our approach to infer a gene network for isoprenoid biosynthesis in Arabidopsis thaliana, we detect modules of closely connected genes and candidate genes for possible cross-talk between the isoprenoid pathways. Genes of downstream pathways also fit well into the network. We evaluate our approach in a simulation study and using the yeast galactose network. |
format | Text |
id | pubmed-545783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-5457832005-01-27 Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana Wille, Anja Zimmermann, Philip Vranová, Eva Fürholz, Andreas Laule, Oliver Bleuler, Stefan Hennig, Lars Prelić, Amela von Rohr, Peter Thiele, Lothar Zitzler, Eckart Gruissem, Wilhelm Bühlmann, Peter Genome Biol Method We present a novel graphical Gaussian modeling approach for reverse engineering of genetic regulatory networks with many genes and few observations. When applying our approach to infer a gene network for isoprenoid biosynthesis in Arabidopsis thaliana, we detect modules of closely connected genes and candidate genes for possible cross-talk between the isoprenoid pathways. Genes of downstream pathways also fit well into the network. We evaluate our approach in a simulation study and using the yeast galactose network. BioMed Central 2004 2004-10-25 /pmc/articles/PMC545783/ /pubmed/15535868 http://dx.doi.org/10.1186/gb-2004-5-11-r92 Text en Copyright © 2004 Wille et al.; licensee BioMed Central Ltd. |
spellingShingle | Method Wille, Anja Zimmermann, Philip Vranová, Eva Fürholz, Andreas Laule, Oliver Bleuler, Stefan Hennig, Lars Prelić, Amela von Rohr, Peter Thiele, Lothar Zitzler, Eckart Gruissem, Wilhelm Bühlmann, Peter Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana |
title | Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana |
title_full | Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana |
title_fullStr | Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana |
title_full_unstemmed | Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana |
title_short | Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana |
title_sort | sparse graphical gaussian modeling of the isoprenoid gene network in arabidopsis thaliana |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545783/ https://www.ncbi.nlm.nih.gov/pubmed/15535868 http://dx.doi.org/10.1186/gb-2004-5-11-r92 |
work_keys_str_mv | AT willeanja sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana AT zimmermannphilip sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana AT vranovaeva sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana AT furholzandreas sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana AT lauleoliver sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana AT bleulerstefan sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana AT henniglars sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana AT prelicamela sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana AT vonrohrpeter sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana AT thielelothar sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana AT zitzlereckart sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana AT gruissemwilhelm sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana AT buhlmannpeter sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana |