Cargando…

Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana

We present a novel graphical Gaussian modeling approach for reverse engineering of genetic regulatory networks with many genes and few observations. When applying our approach to infer a gene network for isoprenoid biosynthesis in Arabidopsis thaliana, we detect modules of closely connected genes an...

Descripción completa

Detalles Bibliográficos
Autores principales: Wille, Anja, Zimmermann, Philip, Vranová, Eva, Fürholz, Andreas, Laule, Oliver, Bleuler, Stefan, Hennig, Lars, Prelić, Amela, von Rohr, Peter, Thiele, Lothar, Zitzler, Eckart, Gruissem, Wilhelm, Bühlmann, Peter
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545783/
https://www.ncbi.nlm.nih.gov/pubmed/15535868
http://dx.doi.org/10.1186/gb-2004-5-11-r92
_version_ 1782122214318931968
author Wille, Anja
Zimmermann, Philip
Vranová, Eva
Fürholz, Andreas
Laule, Oliver
Bleuler, Stefan
Hennig, Lars
Prelić, Amela
von Rohr, Peter
Thiele, Lothar
Zitzler, Eckart
Gruissem, Wilhelm
Bühlmann, Peter
author_facet Wille, Anja
Zimmermann, Philip
Vranová, Eva
Fürholz, Andreas
Laule, Oliver
Bleuler, Stefan
Hennig, Lars
Prelić, Amela
von Rohr, Peter
Thiele, Lothar
Zitzler, Eckart
Gruissem, Wilhelm
Bühlmann, Peter
author_sort Wille, Anja
collection PubMed
description We present a novel graphical Gaussian modeling approach for reverse engineering of genetic regulatory networks with many genes and few observations. When applying our approach to infer a gene network for isoprenoid biosynthesis in Arabidopsis thaliana, we detect modules of closely connected genes and candidate genes for possible cross-talk between the isoprenoid pathways. Genes of downstream pathways also fit well into the network. We evaluate our approach in a simulation study and using the yeast galactose network.
format Text
id pubmed-545783
institution National Center for Biotechnology Information
language English
publishDate 2004
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-5457832005-01-27 Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana Wille, Anja Zimmermann, Philip Vranová, Eva Fürholz, Andreas Laule, Oliver Bleuler, Stefan Hennig, Lars Prelić, Amela von Rohr, Peter Thiele, Lothar Zitzler, Eckart Gruissem, Wilhelm Bühlmann, Peter Genome Biol Method We present a novel graphical Gaussian modeling approach for reverse engineering of genetic regulatory networks with many genes and few observations. When applying our approach to infer a gene network for isoprenoid biosynthesis in Arabidopsis thaliana, we detect modules of closely connected genes and candidate genes for possible cross-talk between the isoprenoid pathways. Genes of downstream pathways also fit well into the network. We evaluate our approach in a simulation study and using the yeast galactose network. BioMed Central 2004 2004-10-25 /pmc/articles/PMC545783/ /pubmed/15535868 http://dx.doi.org/10.1186/gb-2004-5-11-r92 Text en Copyright © 2004 Wille et al.; licensee BioMed Central Ltd.
spellingShingle Method
Wille, Anja
Zimmermann, Philip
Vranová, Eva
Fürholz, Andreas
Laule, Oliver
Bleuler, Stefan
Hennig, Lars
Prelić, Amela
von Rohr, Peter
Thiele, Lothar
Zitzler, Eckart
Gruissem, Wilhelm
Bühlmann, Peter
Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana
title Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana
title_full Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana
title_fullStr Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana
title_full_unstemmed Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana
title_short Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana
title_sort sparse graphical gaussian modeling of the isoprenoid gene network in arabidopsis thaliana
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545783/
https://www.ncbi.nlm.nih.gov/pubmed/15535868
http://dx.doi.org/10.1186/gb-2004-5-11-r92
work_keys_str_mv AT willeanja sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana
AT zimmermannphilip sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana
AT vranovaeva sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana
AT furholzandreas sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana
AT lauleoliver sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana
AT bleulerstefan sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana
AT henniglars sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana
AT prelicamela sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana
AT vonrohrpeter sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana
AT thielelothar sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana
AT zitzlereckart sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana
AT gruissemwilhelm sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana
AT buhlmannpeter sparsegraphicalgaussianmodelingoftheisoprenoidgenenetworkinarabidopsisthaliana