Cargando…
Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana
We present a novel graphical Gaussian modeling approach for reverse engineering of genetic regulatory networks with many genes and few observations. When applying our approach to infer a gene network for isoprenoid biosynthesis in Arabidopsis thaliana, we detect modules of closely connected genes an...
Autores principales: | Wille, Anja, Zimmermann, Philip, Vranová, Eva, Fürholz, Andreas, Laule, Oliver, Bleuler, Stefan, Hennig, Lars, Prelić, Amela, von Rohr, Peter, Thiele, Lothar, Zitzler, Eckart, Gruissem, Wilhelm, Bühlmann, Peter |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545783/ https://www.ncbi.nlm.nih.gov/pubmed/15535868 http://dx.doi.org/10.1186/gb-2004-5-11-r92 |
Ejemplares similares
-
A Partial Correlation Screening Approach for Controlling the False Positive Rate in Sparse Gaussian Graphical Models
por: Lafit, Ginette, et al.
Publicado: (2019) -
The ‘un-shrunk’ partial correlation in Gaussian graphical models
por: Bernal, Victor, et al.
Publicado: (2021) -
Genevestigator V3: A Reference Expression Database for the Meta-Analysis of Transcriptomes
por: Hruz, Tomas, et al.
Publicado: (2008) -
Exact hypothesis testing for shrinkage-based Gaussian graphical models
por: Bernal, Victor, et al.
Publicado: (2019) -
An algorithm for separation of mixed sparse and Gaussian sources
por: Akkalkotkar, Ameya, et al.
Publicado: (2017)