Cargando…
Consensus clustering and functional interpretation of gene-expression data
Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introdu...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545785/ https://www.ncbi.nlm.nih.gov/pubmed/15535870 http://dx.doi.org/10.1186/gb-2004-5-11-r94 |
_version_ | 1782122214792888320 |
---|---|
author | Swift, Stephen Tucker, Allan Vinciotti, Veronica Martin, Nigel Orengo, Christine Liu, Xiaohui Kellam, Paul |
author_facet | Swift, Stephen Tucker, Allan Vinciotti, Veronica Martin, Nigel Orengo, Christine Liu, Xiaohui Kellam, Paul |
author_sort | Swift, Stephen |
collection | PubMed |
description | Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introduce consensus clustering, which provides such an advantage. When coupled with a statistically based gene functional analysis, our method allowed the identification of novel genes regulated by NFκB and the unfolded protein response in certain B-cell lymphomas. |
format | Text |
id | pubmed-545785 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-5457852005-01-27 Consensus clustering and functional interpretation of gene-expression data Swift, Stephen Tucker, Allan Vinciotti, Veronica Martin, Nigel Orengo, Christine Liu, Xiaohui Kellam, Paul Genome Biol Method Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introduce consensus clustering, which provides such an advantage. When coupled with a statistically based gene functional analysis, our method allowed the identification of novel genes regulated by NFκB and the unfolded protein response in certain B-cell lymphomas. BioMed Central 2004 2004-11-01 /pmc/articles/PMC545785/ /pubmed/15535870 http://dx.doi.org/10.1186/gb-2004-5-11-r94 Text en Copyright © 2004 Swift et al.; licensee BioMed Central Ltd. |
spellingShingle | Method Swift, Stephen Tucker, Allan Vinciotti, Veronica Martin, Nigel Orengo, Christine Liu, Xiaohui Kellam, Paul Consensus clustering and functional interpretation of gene-expression data |
title | Consensus clustering and functional interpretation of gene-expression data |
title_full | Consensus clustering and functional interpretation of gene-expression data |
title_fullStr | Consensus clustering and functional interpretation of gene-expression data |
title_full_unstemmed | Consensus clustering and functional interpretation of gene-expression data |
title_short | Consensus clustering and functional interpretation of gene-expression data |
title_sort | consensus clustering and functional interpretation of gene-expression data |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545785/ https://www.ncbi.nlm.nih.gov/pubmed/15535870 http://dx.doi.org/10.1186/gb-2004-5-11-r94 |
work_keys_str_mv | AT swiftstephen consensusclusteringandfunctionalinterpretationofgeneexpressiondata AT tuckerallan consensusclusteringandfunctionalinterpretationofgeneexpressiondata AT vinciottiveronica consensusclusteringandfunctionalinterpretationofgeneexpressiondata AT martinnigel consensusclusteringandfunctionalinterpretationofgeneexpressiondata AT orengochristine consensusclusteringandfunctionalinterpretationofgeneexpressiondata AT liuxiaohui consensusclusteringandfunctionalinterpretationofgeneexpressiondata AT kellampaul consensusclusteringandfunctionalinterpretationofgeneexpressiondata |