Cargando…

Consensus clustering and functional interpretation of gene-expression data

Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introdu...

Descripción completa

Detalles Bibliográficos
Autores principales: Swift, Stephen, Tucker, Allan, Vinciotti, Veronica, Martin, Nigel, Orengo, Christine, Liu, Xiaohui, Kellam, Paul
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545785/
https://www.ncbi.nlm.nih.gov/pubmed/15535870
http://dx.doi.org/10.1186/gb-2004-5-11-r94
_version_ 1782122214792888320
author Swift, Stephen
Tucker, Allan
Vinciotti, Veronica
Martin, Nigel
Orengo, Christine
Liu, Xiaohui
Kellam, Paul
author_facet Swift, Stephen
Tucker, Allan
Vinciotti, Veronica
Martin, Nigel
Orengo, Christine
Liu, Xiaohui
Kellam, Paul
author_sort Swift, Stephen
collection PubMed
description Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introduce consensus clustering, which provides such an advantage. When coupled with a statistically based gene functional analysis, our method allowed the identification of novel genes regulated by NFκB and the unfolded protein response in certain B-cell lymphomas.
format Text
id pubmed-545785
institution National Center for Biotechnology Information
language English
publishDate 2004
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-5457852005-01-27 Consensus clustering and functional interpretation of gene-expression data Swift, Stephen Tucker, Allan Vinciotti, Veronica Martin, Nigel Orengo, Christine Liu, Xiaohui Kellam, Paul Genome Biol Method Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introduce consensus clustering, which provides such an advantage. When coupled with a statistically based gene functional analysis, our method allowed the identification of novel genes regulated by NFκB and the unfolded protein response in certain B-cell lymphomas. BioMed Central 2004 2004-11-01 /pmc/articles/PMC545785/ /pubmed/15535870 http://dx.doi.org/10.1186/gb-2004-5-11-r94 Text en Copyright © 2004 Swift et al.; licensee BioMed Central Ltd.
spellingShingle Method
Swift, Stephen
Tucker, Allan
Vinciotti, Veronica
Martin, Nigel
Orengo, Christine
Liu, Xiaohui
Kellam, Paul
Consensus clustering and functional interpretation of gene-expression data
title Consensus clustering and functional interpretation of gene-expression data
title_full Consensus clustering and functional interpretation of gene-expression data
title_fullStr Consensus clustering and functional interpretation of gene-expression data
title_full_unstemmed Consensus clustering and functional interpretation of gene-expression data
title_short Consensus clustering and functional interpretation of gene-expression data
title_sort consensus clustering and functional interpretation of gene-expression data
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545785/
https://www.ncbi.nlm.nih.gov/pubmed/15535870
http://dx.doi.org/10.1186/gb-2004-5-11-r94
work_keys_str_mv AT swiftstephen consensusclusteringandfunctionalinterpretationofgeneexpressiondata
AT tuckerallan consensusclusteringandfunctionalinterpretationofgeneexpressiondata
AT vinciottiveronica consensusclusteringandfunctionalinterpretationofgeneexpressiondata
AT martinnigel consensusclusteringandfunctionalinterpretationofgeneexpressiondata
AT orengochristine consensusclusteringandfunctionalinterpretationofgeneexpressiondata
AT liuxiaohui consensusclusteringandfunctionalinterpretationofgeneexpressiondata
AT kellampaul consensusclusteringandfunctionalinterpretationofgeneexpressiondata