Cargando…
Consensus clustering and functional interpretation of gene-expression data
Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introdu...
Autores principales: | Swift, Stephen, Tucker, Allan, Vinciotti, Veronica, Martin, Nigel, Orengo, Christine, Liu, Xiaohui, Kellam, Paul |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545785/ https://www.ncbi.nlm.nih.gov/pubmed/15535870 http://dx.doi.org/10.1186/gb-2004-5-11-r94 |
Ejemplares similares
-
CIDER: an interpretable meta-clustering framework for single-cell RNA-seq data integration and evaluation
por: Hu, Zhiyuan, et al.
Publicado: (2021) -
Consensus clustering approach to group brain connectivity matrices
por: Rasero, Javier, et al.
Publicado: (2017) -
Gene Expression Data Classification Using Consensus Independent Component Analysis
por: Zheng, Chun-Hou, et al.
Publicado: (2008) -
The LeFE algorithm: embracing the complexity of gene expression in the interpretation of microarray data
por: Eichler, Gabriel S, et al.
Publicado: (2007) -
scINSIGHT for interpreting single-cell gene expression from biologically heterogeneous data
por: Qian, Kun, et al.
Publicado: (2022)