Cargando…
Estimating genomic coexpression networks using first-order conditional independence
We describe a computationally efficient statistical framework for estimating networks of coexpressed genes. This framework exploits first-order conditional independence relationships among gene-expression measurements to estimate patterns of association. We use this approach to estimate a coexpressi...
Autores principales: | Magwene, Paul M, Kim, Junhyong |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545795/ https://www.ncbi.nlm.nih.gov/pubmed/15575966 http://dx.doi.org/10.1186/gb-2004-5-12-r100 |
Ejemplares similares
-
Debiased personalized gene coexpression networks for population-scale scRNA-seq data
por: Lu, Shan, et al.
Publicado: (2023) -
Sniper: improved SNP discovery by multiply mapping deep sequenced reads
por: Simola, Daniel F, et al.
Publicado: (2011) -
Multi–cell type gene coexpression network analysis reveals coordinated interferon response and cross–cell type correlations in systemic lupus erythematosus
por: Panwar, Bharat, et al.
Publicado: (2021) -
Purification of the CaaX-modified, dynamin-related large GTPase hGBP1 by coexpression with farnesyltransferase
por: Fres, Julia M., et al.
Publicado: (2010) -
Estimation of policy-relevant reference conditions throughout national river networks
por: Stoffels, Rick J., et al.
Publicado: (2021)