Cargando…

Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium

The stoichiometric constraints of algal growth are well understood, whereas there is less knowledge for heterotrophic bacterioplankton. Growth of the marine bacterium Phaeobacter inhibens DSM 17395, belonging to the globally distributed Roseobacter group, was studied across a wide concentration rang...

Descripción completa

Detalles Bibliográficos
Autores principales: Trautwein, Kathleen, Feenders, Christoph, Hulsch, Reiner, Ruppersberg, Hanna S., Strijkstra, Annemieke, Kant, Mirjam, Vagts, Jannes, Wünsch, Daniel, Michalke, Bernhard, Maczka, Michael, Schulz, Stefan, Hillebrand, Helmut, Blasius, Bernd, Rabus, Ralf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458051/
https://www.ncbi.nlm.nih.gov/pubmed/28486660
http://dx.doi.org/10.1093/femsec/fix059
_version_ 1783241672660877312
author Trautwein, Kathleen
Feenders, Christoph
Hulsch, Reiner
Ruppersberg, Hanna S.
Strijkstra, Annemieke
Kant, Mirjam
Vagts, Jannes
Wünsch, Daniel
Michalke, Bernhard
Maczka, Michael
Schulz, Stefan
Hillebrand, Helmut
Blasius, Bernd
Rabus, Ralf
author_facet Trautwein, Kathleen
Feenders, Christoph
Hulsch, Reiner
Ruppersberg, Hanna S.
Strijkstra, Annemieke
Kant, Mirjam
Vagts, Jannes
Wünsch, Daniel
Michalke, Bernhard
Maczka, Michael
Schulz, Stefan
Hillebrand, Helmut
Blasius, Bernd
Rabus, Ralf
author_sort Trautwein, Kathleen
collection PubMed
description The stoichiometric constraints of algal growth are well understood, whereas there is less knowledge for heterotrophic bacterioplankton. Growth of the marine bacterium Phaeobacter inhibens DSM 17395, belonging to the globally distributed Roseobacter group, was studied across a wide concentration range of NH(4)(+) and PO(4)(3−). The unique dataset covers 415 different concentration pairs, corresponding to 207 different molar N:P ratios (from 10(−2) to 10(5)). Maximal growth (by growth rate and biomass yield) was observed within a restricted concentration range at N:P ratios (∼50−120) markedly above Redfield. Experimentally determined growth parameters deviated to a large part from model predictions based on Liebig's law of the minimum, thus implicating synergistic co-limitation due to biochemical dependence of resources. Internal elemental ratios of P. inhibens varied with external nutrient supply within physiological constraints, thus adding to the growing evidence that aquatic bacteria can be flexible in their internal elemental composition. Taken together, the findings reported here revealed that P. inhibens is well adapted to fluctuating availability of inorganic N and P, expected to occur in its natural habitat (e.g. colonized algae, coastal areas). Moreover, this study suggests that elemental variability in bacterioplankton needs to be considered in the ecological stoichiometry of the oceans.
format Online
Article
Text
id pubmed-5458051
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-54580512017-06-08 Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium Trautwein, Kathleen Feenders, Christoph Hulsch, Reiner Ruppersberg, Hanna S. Strijkstra, Annemieke Kant, Mirjam Vagts, Jannes Wünsch, Daniel Michalke, Bernhard Maczka, Michael Schulz, Stefan Hillebrand, Helmut Blasius, Bernd Rabus, Ralf FEMS Microbiol Ecol Research Article The stoichiometric constraints of algal growth are well understood, whereas there is less knowledge for heterotrophic bacterioplankton. Growth of the marine bacterium Phaeobacter inhibens DSM 17395, belonging to the globally distributed Roseobacter group, was studied across a wide concentration range of NH(4)(+) and PO(4)(3−). The unique dataset covers 415 different concentration pairs, corresponding to 207 different molar N:P ratios (from 10(−2) to 10(5)). Maximal growth (by growth rate and biomass yield) was observed within a restricted concentration range at N:P ratios (∼50−120) markedly above Redfield. Experimentally determined growth parameters deviated to a large part from model predictions based on Liebig's law of the minimum, thus implicating synergistic co-limitation due to biochemical dependence of resources. Internal elemental ratios of P. inhibens varied with external nutrient supply within physiological constraints, thus adding to the growing evidence that aquatic bacteria can be flexible in their internal elemental composition. Taken together, the findings reported here revealed that P. inhibens is well adapted to fluctuating availability of inorganic N and P, expected to occur in its natural habitat (e.g. colonized algae, coastal areas). Moreover, this study suggests that elemental variability in bacterioplankton needs to be considered in the ecological stoichiometry of the oceans. Oxford University Press 2017-05-09 2017-05 /pmc/articles/PMC5458051/ /pubmed/28486660 http://dx.doi.org/10.1093/femsec/fix059 Text en © FEMS 2017. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Trautwein, Kathleen
Feenders, Christoph
Hulsch, Reiner
Ruppersberg, Hanna S.
Strijkstra, Annemieke
Kant, Mirjam
Vagts, Jannes
Wünsch, Daniel
Michalke, Bernhard
Maczka, Michael
Schulz, Stefan
Hillebrand, Helmut
Blasius, Bernd
Rabus, Ralf
Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium
title Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium
title_full Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium
title_fullStr Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium
title_full_unstemmed Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium
title_short Non-Redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium
title_sort non-redfield, nutrient synergy and flexible internal elemental stoichiometry in a marine bacterium
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458051/
https://www.ncbi.nlm.nih.gov/pubmed/28486660
http://dx.doi.org/10.1093/femsec/fix059
work_keys_str_mv AT trautweinkathleen nonredfieldnutrientsynergyandflexibleinternalelementalstoichiometryinamarinebacterium
AT feenderschristoph nonredfieldnutrientsynergyandflexibleinternalelementalstoichiometryinamarinebacterium
AT hulschreiner nonredfieldnutrientsynergyandflexibleinternalelementalstoichiometryinamarinebacterium
AT ruppersberghannas nonredfieldnutrientsynergyandflexibleinternalelementalstoichiometryinamarinebacterium
AT strijkstraannemieke nonredfieldnutrientsynergyandflexibleinternalelementalstoichiometryinamarinebacterium
AT kantmirjam nonredfieldnutrientsynergyandflexibleinternalelementalstoichiometryinamarinebacterium
AT vagtsjannes nonredfieldnutrientsynergyandflexibleinternalelementalstoichiometryinamarinebacterium
AT wunschdaniel nonredfieldnutrientsynergyandflexibleinternalelementalstoichiometryinamarinebacterium
AT michalkebernhard nonredfieldnutrientsynergyandflexibleinternalelementalstoichiometryinamarinebacterium
AT maczkamichael nonredfieldnutrientsynergyandflexibleinternalelementalstoichiometryinamarinebacterium
AT schulzstefan nonredfieldnutrientsynergyandflexibleinternalelementalstoichiometryinamarinebacterium
AT hillebrandhelmut nonredfieldnutrientsynergyandflexibleinternalelementalstoichiometryinamarinebacterium
AT blasiusbernd nonredfieldnutrientsynergyandflexibleinternalelementalstoichiometryinamarinebacterium
AT rabusralf nonredfieldnutrientsynergyandflexibleinternalelementalstoichiometryinamarinebacterium