Cargando…

Magnetic-field induced multiple topological phases in pyrochlore iridates with Mott criticality

The interplay between electron correlation and spin–orbit coupling in solids has been proven to be an abundant gold mine for emergent topological phases. Here we report the results of systematic magnetotransport study on bandwidth-controlled pyrochlore iridates R(2)Ir(2)O(7) near quantum metal-insul...

Descripción completa

Detalles Bibliográficos
Autores principales: Ueda, Kentaro, Oh, Taekoo, Yang, Bohm-Jung, Kaneko, Ryoma, Fujioka, Jun, Nagaosa, Naoto, Tokura, Yoshinori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458080/
https://www.ncbi.nlm.nih.gov/pubmed/28537276
http://dx.doi.org/10.1038/ncomms15515
Descripción
Sumario:The interplay between electron correlation and spin–orbit coupling in solids has been proven to be an abundant gold mine for emergent topological phases. Here we report the results of systematic magnetotransport study on bandwidth-controlled pyrochlore iridates R(2)Ir(2)O(7) near quantum metal-insulator transition (MIT). The application of a magnetic field along [001] crystallographic direction (H//[001]) significantly decreases resistivity while producing a unique Hall response, which indicates the emergence of the novel semi-metallic state in the course of the magnetic transformation from all-in all-out (AIAO, 4/0) to 2-in 2-out (2/2) spin configuration. For H//[111] that favours 3-in 1-out (3/1) configuration, by contrast, the resistivity exhibits saturation at a relatively high value typical of a semimetal. The observed properties can be identified to reflect the emergence of multiple Weyl semimetal states with varying numbers of Weyl points and line nodes in respective spin configurations. With tuning effective bandwidth, all these states appear to concentrate around the quantum MIT region, which may open a promising venue for topological phenomena and functions.