Cargando…

Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core

Polyglutamine expansion in the huntingtin protein is the primary genetic cause of Huntington's disease (HD). Fragments coinciding with mutant huntingtin exon1 aggregate in vivo and induce HD-like pathology in mouse models. The resulting aggregates can have different structures that affect their...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Hsiang-Kai, Boatz, Jennifer C., Krabbendam, Inge E., Kodali, Ravindra, Hou, Zhipeng, Wetzel, Ronald, Dolga, Amalia M., Poirier, Michelle A., van der Wel, Patrick C. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458082/
https://www.ncbi.nlm.nih.gov/pubmed/28537272
http://dx.doi.org/10.1038/ncomms15462
_version_ 1783241680577626112
author Lin, Hsiang-Kai
Boatz, Jennifer C.
Krabbendam, Inge E.
Kodali, Ravindra
Hou, Zhipeng
Wetzel, Ronald
Dolga, Amalia M.
Poirier, Michelle A.
van der Wel, Patrick C. A.
author_facet Lin, Hsiang-Kai
Boatz, Jennifer C.
Krabbendam, Inge E.
Kodali, Ravindra
Hou, Zhipeng
Wetzel, Ronald
Dolga, Amalia M.
Poirier, Michelle A.
van der Wel, Patrick C. A.
author_sort Lin, Hsiang-Kai
collection PubMed
description Polyglutamine expansion in the huntingtin protein is the primary genetic cause of Huntington's disease (HD). Fragments coinciding with mutant huntingtin exon1 aggregate in vivo and induce HD-like pathology in mouse models. The resulting aggregates can have different structures that affect their biochemical behaviour and cytotoxic activity. Here we report our studies of the structure and functional characteristics of multiple mutant htt exon1 fibrils by complementary techniques, including infrared and solid-state NMR spectroscopies. Magic-angle-spinning NMR reveals that fibrillar exon1 has a partly mobile α-helix in its aggregation-accelerating N terminus, and semi-rigid polyproline II helices in the proline-rich flanking domain (PRD). The polyglutamine-proximal portions of these domains are immobilized and clustered, limiting access to aggregation-modulating antibodies. The polymorphic fibrils differ in their flanking domains rather than the polyglutamine amyloid structure. They are effective at seeding polyglutamine aggregation and exhibit cytotoxic effects when applied to neuronal cells.
format Online
Article
Text
id pubmed-5458082
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-54580822017-07-11 Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core Lin, Hsiang-Kai Boatz, Jennifer C. Krabbendam, Inge E. Kodali, Ravindra Hou, Zhipeng Wetzel, Ronald Dolga, Amalia M. Poirier, Michelle A. van der Wel, Patrick C. A. Nat Commun Article Polyglutamine expansion in the huntingtin protein is the primary genetic cause of Huntington's disease (HD). Fragments coinciding with mutant huntingtin exon1 aggregate in vivo and induce HD-like pathology in mouse models. The resulting aggregates can have different structures that affect their biochemical behaviour and cytotoxic activity. Here we report our studies of the structure and functional characteristics of multiple mutant htt exon1 fibrils by complementary techniques, including infrared and solid-state NMR spectroscopies. Magic-angle-spinning NMR reveals that fibrillar exon1 has a partly mobile α-helix in its aggregation-accelerating N terminus, and semi-rigid polyproline II helices in the proline-rich flanking domain (PRD). The polyglutamine-proximal portions of these domains are immobilized and clustered, limiting access to aggregation-modulating antibodies. The polymorphic fibrils differ in their flanking domains rather than the polyglutamine amyloid structure. They are effective at seeding polyglutamine aggregation and exhibit cytotoxic effects when applied to neuronal cells. Nature Publishing Group 2017-05-24 /pmc/articles/PMC5458082/ /pubmed/28537272 http://dx.doi.org/10.1038/ncomms15462 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Lin, Hsiang-Kai
Boatz, Jennifer C.
Krabbendam, Inge E.
Kodali, Ravindra
Hou, Zhipeng
Wetzel, Ronald
Dolga, Amalia M.
Poirier, Michelle A.
van der Wel, Patrick C. A.
Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core
title Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core
title_full Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core
title_fullStr Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core
title_full_unstemmed Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core
title_short Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core
title_sort fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458082/
https://www.ncbi.nlm.nih.gov/pubmed/28537272
http://dx.doi.org/10.1038/ncomms15462
work_keys_str_mv AT linhsiangkai fibrilpolymorphismaffectsimmobilizednonamyloidflankingdomainsofhuntingtinexon1ratherthanitspolyglutaminecore
AT boatzjenniferc fibrilpolymorphismaffectsimmobilizednonamyloidflankingdomainsofhuntingtinexon1ratherthanitspolyglutaminecore
AT krabbendamingee fibrilpolymorphismaffectsimmobilizednonamyloidflankingdomainsofhuntingtinexon1ratherthanitspolyglutaminecore
AT kodaliravindra fibrilpolymorphismaffectsimmobilizednonamyloidflankingdomainsofhuntingtinexon1ratherthanitspolyglutaminecore
AT houzhipeng fibrilpolymorphismaffectsimmobilizednonamyloidflankingdomainsofhuntingtinexon1ratherthanitspolyglutaminecore
AT wetzelronald fibrilpolymorphismaffectsimmobilizednonamyloidflankingdomainsofhuntingtinexon1ratherthanitspolyglutaminecore
AT dolgaamaliam fibrilpolymorphismaffectsimmobilizednonamyloidflankingdomainsofhuntingtinexon1ratherthanitspolyglutaminecore
AT poiriermichellea fibrilpolymorphismaffectsimmobilizednonamyloidflankingdomainsofhuntingtinexon1ratherthanitspolyglutaminecore
AT vanderwelpatrickca fibrilpolymorphismaffectsimmobilizednonamyloidflankingdomainsofhuntingtinexon1ratherthanitspolyglutaminecore