Cargando…
Generic decoding of seen and imagined objects using hierarchical visual features
Object recognition is a key function in both human and machine vision. While brain decoding of seen and imagined objects has been achieved, the prediction is limited to training examples. We present a decoding approach for arbitrary objects using the machine vision principle that an object category...
Autores principales: | Horikawa, Tomoyasu, Kamitani, Yukiyasu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458127/ https://www.ncbi.nlm.nih.gov/pubmed/28530228 http://dx.doi.org/10.1038/ncomms15037 |
Ejemplares similares
-
Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features
por: Horikawa, Tomoyasu, et al.
Publicado: (2017) -
Position Information Encoded by Population Activity in Hierarchical Visual Areas
por: Majima, Kei, et al.
Publicado: (2017) -
Characterization of deep neural network features by decodability from human brain activity
por: Horikawa, Tomoyasu, et al.
Publicado: (2019) -
Sharpening of Hierarchical Visual Feature Representations of Blurred Images
por: Abdelhack, Mohamed, et al.
Publicado: (2018) -
The Neural Representation of Visually Evoked Emotion Is High-Dimensional, Categorical, and Distributed across Transmodal Brain Regions
por: Horikawa, Tomoyasu, et al.
Publicado: (2020)