Cargando…

A peptide derived from apoptin inhibits glioma growth

Glioblastoma (GBM) is associated with poor prognosis due to its resistance to surgery, irradiation, and conventional chemotherapy. Thus, efficient therapeutic approaches for the treatment of GBM are urgently needed. HSP70 is an antiapoptotic protein that participates in the inhibition of both mitoch...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Liqiu, Zhao, Hengyu, Cui, Zhongqi, Lv, Yueshan, Zhang, Wenjia, Ma, Xiaoyu, Zhang, Jianan, Sun, Banghao, Zhou, Danyang, Yuan, Lijie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458194/
https://www.ncbi.nlm.nih.gov/pubmed/28415709
http://dx.doi.org/10.18632/oncotarget.16094
Descripción
Sumario:Glioblastoma (GBM) is associated with poor prognosis due to its resistance to surgery, irradiation, and conventional chemotherapy. Thus, efficient therapeutic approaches for the treatment of GBM are urgently needed. HSP70 is an antiapoptotic protein that participates in the inhibition of both mitochondrial and membrane receptor apoptosis pathways and is highly expressed in glioma tissues. Here, we investigated a derivative of apoptin; specifically, a chicken anemia viral protein with selective toxicity toward cancer cells that can inhibit hyperactive molecules, including HSP70. Our earlier studies demonstrated that apoptin directly binds to the promoter of HSP70 and inhibits HSP70 transcription, which contributes to HSP70 downregulation. This study provides the first demonstration of the therapeutic potential of an apoptin-derived peptide for the treatment of GBM by identifying the minimal region of the apoptin domain required for interaction with the heat-shock element (HSE). This apoptin-derived peptide (ADP) inhibits glioma cell proliferation and tumor growth as well as exhibits an increased ability to promote apoptosis in GBM cells compared with rapamycin and temozolomide. ADP treatment inhibited xenograft tumor growth and increased the overall health and survival of nude mice implanted with GBM cells. These effects were measured in tumors obtained from cell lines and were observed in both intracranial and subcutaneous xenografts. In conclusion, we provide the first demonstration that ADP has therapeutic potential for the treatment of human GBM. Specifically, this study suggests that ADP is a potent candidate for drug development based on its favorable toxicity and pharmacokinetic profiles as well as its time- and cost-saving benefits.