Cargando…

Investigation of hypoxia conditions using oxygen-enhanced magnetic resonance imaging measurements in glioma models

The objective of this study was to determine whether using oxygen-enhanced magnetic resonance imaging (OE-MRI) to assess hypoxia is feasible and whether historical measurements, pO2 changes, and percentage of signal intensity changes (PSIC) are correlated in an animal model of glioma. A total of 25...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Qi, Tang, Cheuk Ying, Gu, Di, Zhu, Jinyu, Li, Guojun, Wu, Yingwei, Tao, Xiaofeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458254/
https://www.ncbi.nlm.nih.gov/pubmed/28418866
http://dx.doi.org/10.18632/oncotarget.16256
Descripción
Sumario:The objective of this study was to determine whether using oxygen-enhanced magnetic resonance imaging (OE-MRI) to assess hypoxia is feasible and whether historical measurements, pO2 changes, and percentage of signal intensity changes (PSIC) are correlated in an animal model of glioma. A total of 25 Sprague-Dawley rats were used to establish C6 brain or subcutaneous glioma model. Nine rats with brain gliomas underwent OE-MRI followed by histopathologic analysis to assess microvessel density and hypoxia. Another 11 rats were underwent OE-MRI and were followed for a survival analysis. Time–T1-weighted MR signal intensity (SI) curves and PSIC maps were derived from the OE-MRI data. High–regions of interests (ROI-h; PSIC > 10%) and low-ROIs (ROI-l; PSIC < 10%) were defined on the PSIC maps. To validate the PSIC map for identifying tumor hypoxia, we subjected an additional 5 rats with subcutaneous glioma to OE-MRI and pO2 measurements. All tumors showed regional heterogeneity on the PSIC maps. For the brain tumors, the time-SI curves for the ROIs-h showed a greater increase in SI than those for the ROIs-l did. The percentage of tumor area with a low PSIC was significantly correlated with the percentage of hypoxia staining and necrosis (r =0.71; P<0.05). ROIs with a higher PSIC typically had more vessels (r=0.88; P<0.05). A significant difference in survival was shown (log-rank P = 0.035). The time-pO2 curves of the subcutaneous tumors were similar to the time-SI curves. PSIC was significantly correlated with pO2 changes (r =0.82; P<0.05). These findings suggest that OE-MRI measurements can be used to assess hypoxia in C6 glioma models. In these models, the PSIC value was correlated with survival, indicating that PSIC could serve as a prognostic marker for glioma.