Cargando…
Gastrodin protects against LPS-induced acute lung injury by activating Nrf2 signaling pathway
Gastrodin (GAS), a phenolic glucoside derived from Gastrodiaelata Blume, has been reported to have anti-inflammatory effect. The aim of this study was to investigate the effects of GAS on LPS-induced acute lung injury in mice. ALI was induced by the intranasal administration of LPS and GAS was given...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458274/ https://www.ncbi.nlm.nih.gov/pubmed/28389632 http://dx.doi.org/10.18632/oncotarget.16740 |
Sumario: | Gastrodin (GAS), a phenolic glucoside derived from Gastrodiaelata Blume, has been reported to have anti-inflammatory effect. The aim of this study was to investigate the effects of GAS on LPS-induced acute lung injury in mice. ALI was induced by the intranasal administration of LPS and GAS was given 1 h or 12 h after LPS treatment. The results indicated that GAS treatment markedly attenuated the damage of lung injury induced by LPS. GAS attenuated the activity of myeloperoxidase (MPO) and down-regulated the levels of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β in BALF. LPS-induced lung edema and lung function were also reversed by GAS. Furthermore, GAS was found to inhibit LPS-induced inflammatory cells infiltration. In addition, treatment of GAS inhibited LPS-induced NF-κB activation and up-regulated the expression of Nrf2 and HO-1. In conclusion, our results indicated that GAS had anti-inflammatory effects on LPS-induced acute lung injury. The anti-inflammatory mechanism of GAS was through the inhibition of NF-κB and activation of Nrf2 signaling pathways. |
---|