Cargando…
Replicating viral vector platform exploits alarmin signals for potent CD8(+) T cell-mediated tumour immunotherapy
Viral infections lead to alarmin release and elicit potent cytotoxic effector T lymphocyte (CTL(eff)) responses. Conversely, the induction of protective tumour-specific CTL(eff) and their recruitment into the tumour remain challenging tasks. Here we show that lymphocytic choriomeningitis virus (LCMV...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458557/ https://www.ncbi.nlm.nih.gov/pubmed/28548102 http://dx.doi.org/10.1038/ncomms15327 |
Sumario: | Viral infections lead to alarmin release and elicit potent cytotoxic effector T lymphocyte (CTL(eff)) responses. Conversely, the induction of protective tumour-specific CTL(eff) and their recruitment into the tumour remain challenging tasks. Here we show that lymphocytic choriomeningitis virus (LCMV) can be engineered to serve as a replication competent, stably-attenuated immunotherapy vector (artLCMV). artLCMV delivers tumour-associated antigens to dendritic cells for efficient CTL priming. Unlike replication-deficient vectors, artLCMV targets also lymphoid tissue stroma cells expressing the alarmin interleukin-33. By triggering interleukin-33 signals, artLCMV elicits CTL(eff) responses of higher magnitude and functionality than those induced by replication-deficient vectors. Superior anti-tumour efficacy of artLCMV immunotherapy depends on interleukin-33 signalling, and a massive CTL(eff) influx triggers an inflammatory conversion of the tumour microenvironment. Our observations suggest that replicating viral delivery systems can release alarmins for improved anti-tumour efficacy. These mechanistic insights may outweigh safety concerns around replicating viral vectors in cancer immunotherapy. |
---|