Cargando…

Secondary Ammonium Agonists Make Dual Cation-π Interactions in α4β2 Nicotinic Receptors

A cation-π interaction between the ammonium group of an agonist and a conserved tryptophan termed TrpB is a near universal feature of agonist binding to nicotinic acetylcholine receptors (nAChRs). TrpB is one of five residues that form the aromatic box of the agonist binding site, and for the protot...

Descripción completa

Detalles Bibliográficos
Autores principales: Post, Michael R., Tender, Gabrielle S., Lester, Henry A., Dougherty, Dennis A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society for Neuroscience 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458768/
https://www.ncbi.nlm.nih.gov/pubmed/28589175
http://dx.doi.org/10.1523/ENEURO.0032-17.2017
Descripción
Sumario:A cation-π interaction between the ammonium group of an agonist and a conserved tryptophan termed TrpB is a near universal feature of agonist binding to nicotinic acetylcholine receptors (nAChRs). TrpB is one of five residues that form the aromatic box of the agonist binding site, and for the prototype agonists ACh and nicotine, only TrpB makes a functional cation-π interaction. We report that, in addition to TrpB, a significant cation-π interaction is made to a second aromatic, TyrC2, by the agonists metanicotine, TC299423, varenicline, and nornicotine. A common structural feature of these agonists, and a distinction from ACh and nicotine, is a protonated secondary amine that provides the cation for the cation-π interaction. These results indicate a distinction in binding modes between agonists with subtly different structures that may provide guidance for the development of subtype-selective agonists of nAChRs.