Cargando…

Progress in Mirror-Based Fusion Neutron Source Development

The Budker Institute of Nuclear Physics in worldwide collaboration has developed a project of a 14 MeV neutron source for fusion material studies and other applications. The projected neutron source of the plasma type is based on the gas dynamic trap (GDT), which is a special magnetic mirror system...

Descripción completa

Detalles Bibliográficos
Autores principales: Anikeev, A. V., Bagryansky, P. A., Beklemishev, A. D., Ivanov, A. A., Kolesnikov, E. Yu., Korzhavina, M. S., Korobeinikova, O. A., Lizunov, A. A., Maximov, V. V., Murakhtin, S. V., Pinzhenin, E. I., Prikhodko, V. V., Soldatkina, E. I., Solomakhin, A. L., Tsidulko, Yu. A., Yakovlev, D. V., Yurov, D. V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458859/
https://www.ncbi.nlm.nih.gov/pubmed/28793722
http://dx.doi.org/10.3390/ma8125471
_version_ 1783241839499804672
author Anikeev, A. V.
Bagryansky, P. A.
Beklemishev, A. D.
Ivanov, A. A.
Kolesnikov, E. Yu.
Korzhavina, M. S.
Korobeinikova, O. A.
Lizunov, A. A.
Maximov, V. V.
Murakhtin, S. V.
Pinzhenin, E. I.
Prikhodko, V. V.
Soldatkina, E. I.
Solomakhin, A. L.
Tsidulko, Yu. A.
Yakovlev, D. V.
Yurov, D. V.
author_facet Anikeev, A. V.
Bagryansky, P. A.
Beklemishev, A. D.
Ivanov, A. A.
Kolesnikov, E. Yu.
Korzhavina, M. S.
Korobeinikova, O. A.
Lizunov, A. A.
Maximov, V. V.
Murakhtin, S. V.
Pinzhenin, E. I.
Prikhodko, V. V.
Soldatkina, E. I.
Solomakhin, A. L.
Tsidulko, Yu. A.
Yakovlev, D. V.
Yurov, D. V.
author_sort Anikeev, A. V.
collection PubMed
description The Budker Institute of Nuclear Physics in worldwide collaboration has developed a project of a 14 MeV neutron source for fusion material studies and other applications. The projected neutron source of the plasma type is based on the gas dynamic trap (GDT), which is a special magnetic mirror system for plasma confinement. Essential progress in plasma parameters has been achieved in recent experiments at the GDT facility in the Budker Institute, which is a hydrogen (deuterium) prototype of the source. Stable confinement of hot-ion plasmas with the relative pressure exceeding 0.5 was demonstrated. The electron temperature was increased up to 0.9 keV in the regime with additional electron cyclotron resonance heating (ECRH) of a moderate power. These parameters are the record for axisymmetric open mirror traps. These achievements elevate the projects of a GDT-based neutron source on a higher level of competitive ability and make it possible to construct a source with parameters suitable for materials testing today. The paper presents the progress in experimental studies and numerical simulations of the mirror-based fusion neutron source and its possible applications including a fusion material test facility and a fusion-fission hybrid system.
format Online
Article
Text
id pubmed-5458859
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-54588592017-07-28 Progress in Mirror-Based Fusion Neutron Source Development Anikeev, A. V. Bagryansky, P. A. Beklemishev, A. D. Ivanov, A. A. Kolesnikov, E. Yu. Korzhavina, M. S. Korobeinikova, O. A. Lizunov, A. A. Maximov, V. V. Murakhtin, S. V. Pinzhenin, E. I. Prikhodko, V. V. Soldatkina, E. I. Solomakhin, A. L. Tsidulko, Yu. A. Yakovlev, D. V. Yurov, D. V. Materials (Basel) Article The Budker Institute of Nuclear Physics in worldwide collaboration has developed a project of a 14 MeV neutron source for fusion material studies and other applications. The projected neutron source of the plasma type is based on the gas dynamic trap (GDT), which is a special magnetic mirror system for plasma confinement. Essential progress in plasma parameters has been achieved in recent experiments at the GDT facility in the Budker Institute, which is a hydrogen (deuterium) prototype of the source. Stable confinement of hot-ion plasmas with the relative pressure exceeding 0.5 was demonstrated. The electron temperature was increased up to 0.9 keV in the regime with additional electron cyclotron resonance heating (ECRH) of a moderate power. These parameters are the record for axisymmetric open mirror traps. These achievements elevate the projects of a GDT-based neutron source on a higher level of competitive ability and make it possible to construct a source with parameters suitable for materials testing today. The paper presents the progress in experimental studies and numerical simulations of the mirror-based fusion neutron source and its possible applications including a fusion material test facility and a fusion-fission hybrid system. MDPI 2015-12-04 /pmc/articles/PMC5458859/ /pubmed/28793722 http://dx.doi.org/10.3390/ma8125471 Text en © 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Anikeev, A. V.
Bagryansky, P. A.
Beklemishev, A. D.
Ivanov, A. A.
Kolesnikov, E. Yu.
Korzhavina, M. S.
Korobeinikova, O. A.
Lizunov, A. A.
Maximov, V. V.
Murakhtin, S. V.
Pinzhenin, E. I.
Prikhodko, V. V.
Soldatkina, E. I.
Solomakhin, A. L.
Tsidulko, Yu. A.
Yakovlev, D. V.
Yurov, D. V.
Progress in Mirror-Based Fusion Neutron Source Development
title Progress in Mirror-Based Fusion Neutron Source Development
title_full Progress in Mirror-Based Fusion Neutron Source Development
title_fullStr Progress in Mirror-Based Fusion Neutron Source Development
title_full_unstemmed Progress in Mirror-Based Fusion Neutron Source Development
title_short Progress in Mirror-Based Fusion Neutron Source Development
title_sort progress in mirror-based fusion neutron source development
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458859/
https://www.ncbi.nlm.nih.gov/pubmed/28793722
http://dx.doi.org/10.3390/ma8125471
work_keys_str_mv AT anikeevav progressinmirrorbasedfusionneutronsourcedevelopment
AT bagryanskypa progressinmirrorbasedfusionneutronsourcedevelopment
AT beklemishevad progressinmirrorbasedfusionneutronsourcedevelopment
AT ivanovaa progressinmirrorbasedfusionneutronsourcedevelopment
AT kolesnikoveyu progressinmirrorbasedfusionneutronsourcedevelopment
AT korzhavinams progressinmirrorbasedfusionneutronsourcedevelopment
AT korobeinikovaoa progressinmirrorbasedfusionneutronsourcedevelopment
AT lizunovaa progressinmirrorbasedfusionneutronsourcedevelopment
AT maximovvv progressinmirrorbasedfusionneutronsourcedevelopment
AT murakhtinsv progressinmirrorbasedfusionneutronsourcedevelopment
AT pinzheninei progressinmirrorbasedfusionneutronsourcedevelopment
AT prikhodkovv progressinmirrorbasedfusionneutronsourcedevelopment
AT soldatkinaei progressinmirrorbasedfusionneutronsourcedevelopment
AT solomakhinal progressinmirrorbasedfusionneutronsourcedevelopment
AT tsidulkoyua progressinmirrorbasedfusionneutronsourcedevelopment
AT yakovlevdv progressinmirrorbasedfusionneutronsourcedevelopment
AT yurovdv progressinmirrorbasedfusionneutronsourcedevelopment