Cargando…

Experimental Characterization of the Properties of Double-Lap Needled and Hybrid Joints of Carbon/Epoxy Composites

The effect of through-thickness reinforcement by thin 1 mm steel needles (z-pins) on the static tensile strength of double-lap joints of a carbon/epoxy composite was investigated. Two types of joints—z-pinned and hybrid (including glued ones)—were considered. The joints were reinforced in the overla...

Descripción completa

Detalles Bibliográficos
Autores principales: Arnautov, A., Nasibullins, A., Gribniak, V., Blumbergs, I., Hauka, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458913/
https://www.ncbi.nlm.nih.gov/pubmed/28793659
http://dx.doi.org/10.3390/ma8115410
Descripción
Sumario:The effect of through-thickness reinforcement by thin 1 mm steel needles (z-pins) on the static tensile strength of double-lap joints of a carbon/epoxy composite was investigated. Two types of joints—z-pinned and hybrid (including glued ones)—were considered. The joints were reinforced in the overlap region with 9, 25, or 36 z-pins. Comparing mechanical properties of the double-lap joints with the corresponding characteristics of their unpinned counterparts, the z-pins were found to be highly effective: the strength and stiffness of the pinned joints increased up to 300% and 280%, respectively. These improvements were due to a transition in the failure mechanism from debonding of the joint in the absence of z-pins to pullout or shear rupture of z-pins or to the tensile failure of laminate adherends, depending on the volume content of the pins.